Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Advanced
  • Reply to: On the statistical f...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
Reply to: On the statistical foundation of a recent single molecule FRET benchmark

Reply to: On the statistical foundation of a recent single molecule FRET benchmark

Bibliographic Details
Main Authors: Markus Götz, Anders Barth, Søren S. -R. Bohr, Richard Börner, Jixin Chen, Thorben Cordes, Dorothy A. Erie, Christian Gebhardt, Mélodie C. A. S. Hadzic, George L. Hamilton, Nikos S. Hatzakis, Thorsten Hugel, Lydia Kisley, Don C. Lamb, Carlos de Lannoy, Chelsea Mahn, Dushani Dunukara, Dick de Ridder, Hugo Sanabria, Julia Schimpf, Claus A. M. Seidel, Roland K. O. Sigel, Magnus B. Sletfjerding, Johannes Thomsen, Leonie Vollmar, Simon Wanninger, Keith R. Weninger, Pengning Xu, Sonja Schmid
Format: Article
Language:English
Published: Nature Portfolio 2024-04-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-47734-2
  • Holdings
  • Description
  • Similar Items
  • Staff View

Internet

https://doi.org/10.1038/s41467-024-47734-2

Similar Items

  • A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET trajectories
    by: Markus Götz, et al.
    Published: (2022-09-01)
  • Cochaperones convey the energy of ATP hydrolysis for directional action of Hsp90
    by: Leonie Vollmar, et al.
    Published: (2024-01-01)
  • Simulations of camera-based single-molecule fluorescence experiments.
    by: Richard Börner, et al.
    Published: (2018-01-01)
  • DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning
    by: Johannes Thomsen, et al.
    Published: (2020-11-01)
  • Stick, Flick, Click: DNA-guided Fluorescent Labeling of Long RNA for Single-molecule FRET
    by: Fabio D. Steffen, et al.
    Published: (2019-04-01)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs