On a nonlinear PDE involving weighted $p$-Laplacian

In the present paper, we study the nonlinear partial differential equation with the weighted $p$-Laplacian operator \begin{gather*} - \operatorname{div}(w(x)|\nabla u|^{p-2}\nabla u) = \frac{ f(x)}{(1-u)^{2}}, \end{gather*} on a ball ${B}_{r}\subset \mathbb{R}^{N}(N\geq 2)$. Under some appropriate c...

Full description

Bibliographic Details
Main Authors: A. El Khalil, M. D. Morchid Alaoui, Mohamed Laghzal, A. Touzani
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2019-03-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/33978