On a nonlinear PDE involving weighted $p$-Laplacian
In the present paper, we study the nonlinear partial differential equation with the weighted $p$-Laplacian operator \begin{gather*} - \operatorname{div}(w(x)|\nabla u|^{p-2}\nabla u) = \frac{ f(x)}{(1-u)^{2}}, \end{gather*} on a ball ${B}_{r}\subset \mathbb{R}^{N}(N\geq 2)$. Under some appropriate c...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Matemática
2019-03-01
|
Series: | Boletim da Sociedade Paranaense de Matemática |
Subjects: | |
Online Access: | https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/33978 |