On a nonlinear PDE involving weighted $p$-Laplacian

In the present paper, we study the nonlinear partial differential equation with the weighted $p$-Laplacian operator \begin{gather*} - \operatorname{div}(w(x)|\nabla u|^{p-2}\nabla u) = \frac{ f(x)}{(1-u)^{2}}, \end{gather*} on a ball ${B}_{r}\subset \mathbb{R}^{N}(N\geq 2)$. Under some appropriate c...

Full description

Bibliographic Details
Main Authors: A. El Khalil, M. D. Morchid Alaoui, Mohamed Laghzal, A. Touzani
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2019-03-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/33978
_version_ 1797633473592164352
author A. El Khalil
M. D. Morchid Alaoui
Mohamed Laghzal
A. Touzani
author_facet A. El Khalil
M. D. Morchid Alaoui
Mohamed Laghzal
A. Touzani
author_sort A. El Khalil
collection DOAJ
description In the present paper, we study the nonlinear partial differential equation with the weighted $p$-Laplacian operator \begin{gather*} - \operatorname{div}(w(x)|\nabla u|^{p-2}\nabla u) = \frac{ f(x)}{(1-u)^{2}}, \end{gather*} on a ball ${B}_{r}\subset \mathbb{R}^{N}(N\geq 2)$. Under some appropriate conditions on the functions $f, w$ and the nonlinearity $\frac{1}{(1-u)^{2}}$, we prove the existence and the uniqueness of solutions of the above problem. Our analysis mainly combines the variational method and critical point theory. Such solution is obtained as a minimizer for the energy functional associated with our problem in the setting of the weighted Sobolev spaces.
first_indexed 2024-03-11T11:54:30Z
format Article
id doaj.art-1bfb9926b4bc4132be50f654502ee241
institution Directory Open Access Journal
issn 0037-8712
2175-1188
language English
last_indexed 2024-03-11T11:54:30Z
publishDate 2019-03-01
publisher Sociedade Brasileira de Matemática
record_format Article
series Boletim da Sociedade Paranaense de Matemática
spelling doaj.art-1bfb9926b4bc4132be50f654502ee2412023-11-08T20:07:29ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882019-03-0138510.5269/bspm.v38i5.33978On a nonlinear PDE involving weighted $p$-LaplacianA. El Khalil0M. D. Morchid Alaoui1Mohamed Laghzal2A. Touzani3Al-Imam Mohammad Ibn Saud Islamic University (IMSIU) Department of Mathematics and StatisticsUniversity Sidi Mohamed Ben Abdellah Laboratory LAMA, Department of MathematicsUniversity Sidi Mohamed Ben Abdellah Laboratory LAMA, Department of MathematicsUniversity Sidi Mohamed Ben Abdellah Laboratory LAMA, Department of MathematicsIn the present paper, we study the nonlinear partial differential equation with the weighted $p$-Laplacian operator \begin{gather*} - \operatorname{div}(w(x)|\nabla u|^{p-2}\nabla u) = \frac{ f(x)}{(1-u)^{2}}, \end{gather*} on a ball ${B}_{r}\subset \mathbb{R}^{N}(N\geq 2)$. Under some appropriate conditions on the functions $f, w$ and the nonlinearity $\frac{1}{(1-u)^{2}}$, we prove the existence and the uniqueness of solutions of the above problem. Our analysis mainly combines the variational method and critical point theory. Such solution is obtained as a minimizer for the energy functional associated with our problem in the setting of the weighted Sobolev spaces.https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/33978weighted $p$-Laplacian operatorSobolev spacesMuckenhoupt classexistenceuniqueness of solutions
spellingShingle A. El Khalil
M. D. Morchid Alaoui
Mohamed Laghzal
A. Touzani
On a nonlinear PDE involving weighted $p$-Laplacian
Boletim da Sociedade Paranaense de Matemática
weighted $p$-Laplacian operator
Sobolev spaces
Muckenhoupt class
existence
uniqueness of solutions
title On a nonlinear PDE involving weighted $p$-Laplacian
title_full On a nonlinear PDE involving weighted $p$-Laplacian
title_fullStr On a nonlinear PDE involving weighted $p$-Laplacian
title_full_unstemmed On a nonlinear PDE involving weighted $p$-Laplacian
title_short On a nonlinear PDE involving weighted $p$-Laplacian
title_sort on a nonlinear pde involving weighted p laplacian
topic weighted $p$-Laplacian operator
Sobolev spaces
Muckenhoupt class
existence
uniqueness of solutions
url https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/33978
work_keys_str_mv AT aelkhalil onanonlinearpdeinvolvingweightedplaplacian
AT mdmorchidalaoui onanonlinearpdeinvolvingweightedplaplacian
AT mohamedlaghzal onanonlinearpdeinvolvingweightedplaplacian
AT atouzani onanonlinearpdeinvolvingweightedplaplacian