Pancyclicity When Each Cycle Contains k Chords
For integers n ≥ k ≥ 2, let c(n, k) be the minimum number of chords that must be added to a cycle of length n so that the resulting graph has the property that for every l ∈ {k, k + 1, . . . , n}, there is a cycle of length l that contains exactly k of the added chords. Affif Chaouche, Rutherford, a...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Zielona Góra
2019-11-01
|
Series: | Discussiones Mathematicae Graph Theory |
Subjects: | |
Online Access: | https://doi.org/10.7151/dmgt.2106 |