Survival prediction of glioblastoma patients using modern deep learning and machine learning techniques

Abstract In this study, we utilized data from the Surveillance, Epidemiology, and End Results (SEER) database to predict the glioblastoma patients’ survival outcomes. To assess dataset skewness and detect feature importance, we applied Pearson's second coefficient test of skewness and the Ordin...

Full description

Bibliographic Details
Main Authors: Samin Babaei Rikan, Amir Sorayaie Azar, Amin Naemi, Jamshid Bagherzadeh Mohasefi, Habibollah Pirnejad, Uffe Kock Wiil
Format: Article
Language:English
Published: Nature Portfolio 2024-01-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-024-53006-2