Early tension regulation coupled to surface myomerger is necessary for the primary fusion of C2C12 myoblasts
Here, we study the time-dependent regulation of fluctuation–tension during myogenesis and the role of the fusogen, myomerger. We measure nanometric height fluctuations of the basal membrane of C2C12 cells after triggering differentiation. Fusion of cells increases fluctuation–tension but prefers a t...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2022-10-01
|
Series: | Frontiers in Physiology |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fphys.2022.976715/full |
_version_ | 1811241502706237440 |
---|---|
author | Madhura Chakraborty Athul Sivan Arikta Biswas Bidisha Sinha |
author_facet | Madhura Chakraborty Athul Sivan Arikta Biswas Bidisha Sinha |
author_sort | Madhura Chakraborty |
collection | DOAJ |
description | Here, we study the time-dependent regulation of fluctuation–tension during myogenesis and the role of the fusogen, myomerger. We measure nanometric height fluctuations of the basal membrane of C2C12 cells after triggering differentiation. Fusion of cells increases fluctuation–tension but prefers a transient lowering of tension (at ∼2–24 h). Cells fail to fuse if early tension is continuously enhanced by methyl-β-cyclodextrin (MβCD). Perturbing tension regulation also reduces fusion. During this pre-fusion window, cells that finally differentiate usually display lower tension than other non-fusing cells, validating early tension states to be linked to fate decision. Early tension reduction is accompanied by low but gradually increasing level of the surface myomerger. Locally too, regions with higher myomerger intensity display lower tension. However, this negative correlation is lost in the early phase by MβCD-based cholesterol depletion or later as differentiation progresses. We find that with tension and surface-myomerger’s enrichment under these conditions, myomerger clusters become pronouncedly diffused. We, therefore, propose that low tension aided by clustered surface-myomerger at the early phase is crucial for fusion and can be disrupted by cholesterol-reducing molecules, implying the potential to affect muscle health. |
first_indexed | 2024-04-12T13:37:08Z |
format | Article |
id | doaj.art-1d17813fe5004838aa057919bc16e2ce |
institution | Directory Open Access Journal |
issn | 1664-042X |
language | English |
last_indexed | 2024-04-12T13:37:08Z |
publishDate | 2022-10-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Physiology |
spelling | doaj.art-1d17813fe5004838aa057919bc16e2ce2022-12-22T03:30:58ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2022-10-011310.3389/fphys.2022.976715976715Early tension regulation coupled to surface myomerger is necessary for the primary fusion of C2C12 myoblastsMadhura ChakrabortyAthul SivanArikta BiswasBidisha SinhaHere, we study the time-dependent regulation of fluctuation–tension during myogenesis and the role of the fusogen, myomerger. We measure nanometric height fluctuations of the basal membrane of C2C12 cells after triggering differentiation. Fusion of cells increases fluctuation–tension but prefers a transient lowering of tension (at ∼2–24 h). Cells fail to fuse if early tension is continuously enhanced by methyl-β-cyclodextrin (MβCD). Perturbing tension regulation also reduces fusion. During this pre-fusion window, cells that finally differentiate usually display lower tension than other non-fusing cells, validating early tension states to be linked to fate decision. Early tension reduction is accompanied by low but gradually increasing level of the surface myomerger. Locally too, regions with higher myomerger intensity display lower tension. However, this negative correlation is lost in the early phase by MβCD-based cholesterol depletion or later as differentiation progresses. We find that with tension and surface-myomerger’s enrichment under these conditions, myomerger clusters become pronouncedly diffused. We, therefore, propose that low tension aided by clustered surface-myomerger at the early phase is crucial for fusion and can be disrupted by cholesterol-reducing molecules, implying the potential to affect muscle health.https://www.frontiersin.org/articles/10.3389/fphys.2022.976715/fullmyoblast fusionmembrane tensionmembrane fluctuationsmyomergercholesterol |
spellingShingle | Madhura Chakraborty Athul Sivan Arikta Biswas Bidisha Sinha Early tension regulation coupled to surface myomerger is necessary for the primary fusion of C2C12 myoblasts Frontiers in Physiology myoblast fusion membrane tension membrane fluctuations myomerger cholesterol |
title | Early tension regulation coupled to surface myomerger is necessary for the primary fusion of C2C12 myoblasts |
title_full | Early tension regulation coupled to surface myomerger is necessary for the primary fusion of C2C12 myoblasts |
title_fullStr | Early tension regulation coupled to surface myomerger is necessary for the primary fusion of C2C12 myoblasts |
title_full_unstemmed | Early tension regulation coupled to surface myomerger is necessary for the primary fusion of C2C12 myoblasts |
title_short | Early tension regulation coupled to surface myomerger is necessary for the primary fusion of C2C12 myoblasts |
title_sort | early tension regulation coupled to surface myomerger is necessary for the primary fusion of c2c12 myoblasts |
topic | myoblast fusion membrane tension membrane fluctuations myomerger cholesterol |
url | https://www.frontiersin.org/articles/10.3389/fphys.2022.976715/full |
work_keys_str_mv | AT madhurachakraborty earlytensionregulationcoupledtosurfacemyomergerisnecessaryfortheprimaryfusionofc2c12myoblasts AT athulsivan earlytensionregulationcoupledtosurfacemyomergerisnecessaryfortheprimaryfusionofc2c12myoblasts AT ariktabiswas earlytensionregulationcoupledtosurfacemyomergerisnecessaryfortheprimaryfusionofc2c12myoblasts AT bidishasinha earlytensionregulationcoupledtosurfacemyomergerisnecessaryfortheprimaryfusionofc2c12myoblasts |