Regional-Asymmetric Adaptive Graph Convolutional Neural Network for Diagnosis of Autism in Children With Resting-State EEG
Currently, resting-state electroencephalography (rs-EEG) has become an effective and low-cost evaluation way to identify autism spectrum disorders (ASD) in children. However, it is of great challenge to extract useful features from raw rs-EEG data to improve diagnosis performance. Traditional method...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10373946/ |