Machine learning potential assisted exploration of complex defect potential energy surfaces

Abstract Atomic-scale defects generated in materials under both equilibrium and irradiation conditions can significantly impact their physical and mechanical properties. Unraveling the energetically most favorable ground-state configurations of these defects is an important step towards the fundamen...

Full description

Bibliographic Details
Main Authors: Chao Jiang, Chris A. Marianetti, Marat Khafizov, David H. Hurley
Format: Article
Language:English
Published: Nature Portfolio 2024-01-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-024-01207-8