Machine learning potential assisted exploration of complex defect potential energy surfaces
Abstract Atomic-scale defects generated in materials under both equilibrium and irradiation conditions can significantly impact their physical and mechanical properties. Unraveling the energetically most favorable ground-state configurations of these defects is an important step towards the fundamen...
Hlavní autoři: | , , , |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Nature Portfolio
2024-01-01
|
Edice: | npj Computational Materials |
On-line přístup: | https://doi.org/10.1038/s41524-024-01207-8 |