Machine learning potential assisted exploration of complex defect potential energy surfaces

Abstract Atomic-scale defects generated in materials under both equilibrium and irradiation conditions can significantly impact their physical and mechanical properties. Unraveling the energetically most favorable ground-state configurations of these defects is an important step towards the fundamen...

Celý popis

Podrobná bibliografie
Hlavní autoři: Chao Jiang, Chris A. Marianetti, Marat Khafizov, David H. Hurley
Médium: Článek
Jazyk:English
Vydáno: Nature Portfolio 2024-01-01
Edice:npj Computational Materials
On-line přístup:https://doi.org/10.1038/s41524-024-01207-8