DeepL et Google Translate face à l'ambiguïté phraséologique
Malgré les progrès de la traduction automatique neuronale, l'intelligence artificielle ne permet toujours pas à la machine de comprendre pour déjouer tous les pièges de la traduction, notamment ceux de l'ambiguïté lexicale, phraséologique, syntaxique et sémantique (Koehn 2020). Deux struct...
Main Author: | Françoise Bacquelaine |
---|---|
Format: | Article |
Language: | English |
Published: |
Nicolas Turenne
2022-12-01
|
Series: | Journal of Data Mining and Digital Humanities |
Subjects: | |
Online Access: | https://jdmdh.episciences.org/9118/pdf |
Similar Items
-
Word Sense Induction with Attentive Context Clustering
by: Moshe Stekel, et al.
Published: (2022-06-01) -
Generic HTR Models for Medieval Manuscripts. The CREMMALab Project
by: Ariane Pinche
Published: (2023-10-01) -
Causal reasoning and symbolic relationships in Medieval Illuminations
by: Djibril Diarra, et al.
Published: (2019-07-01) -
New schemes for simplifying binary constraint satisfaction problems
by: Wady Naanaa
Published: (2020-06-01) -
Impact of Image Enhancement Methods on Automatic Transcription Trainings with eScriptorium
by: Pauline Jacsont, et al.
Published: (2023-09-01)