Summary: | A biplane quadrotor is a hybrid type of Unmanned Aerial Vehicle (UAV) that has advantages of both fixed-wing and rotary-wing UAVs. In this study, we design controllers using (i) Backstepping Control (BSC), (ii) Integral Terminal Sliding Mode Control (ITSMC), and (iii) Hybrid control (ITSMC + BSC), where the ITSMC controls attitude and BSC controls the altitude subsystems as per the mathematical model of biplane quadrotor. The performance of these controllers is evaluated based on the autonomous trajectory tracking containing all possible maneuvers and operation modes that the biplane quadrotor can perform. Performance analysis reveals that the BSC-based controller is susceptible to a steady-state error in altitude tracking when mass is changed. In contrast, the ITSMC and the “hybrid” controllers achieve smooth tracking in a finite time. Furthermore, the “hybrid” controller outperforms the other designs, reducing tracking error and faster convergence time.
|