Lucas non-Wieferich primes in arithmetic progressions and the abc conjecture
We prove the lower bound for the number of Lucas non-Wieferich primes in arithmetic progressions. More precisely, for any given integer k≥2k\ge 2, there are ≫logx\gg \hspace{0.25em}\log x Lucas non-Wieferich primes p≤xp\le x such that p≡±1(modk)p\equiv \pm 1\hspace{0.25em}\left({\rm{mod}}\hspace{0.3...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2023-03-01
|
Series: | Open Mathematics |
Subjects: | |
Online Access: | https://doi.org/10.1515/math-2022-0563 |