Lucas non-Wieferich primes in arithmetic progressions and the abc conjecture

We prove the lower bound for the number of Lucas non-Wieferich primes in arithmetic progressions. More precisely, for any given integer k≥2k\ge 2, there are ≫logx\gg \hspace{0.25em}\log x Lucas non-Wieferich primes p≤xp\le x such that p≡±1(modk)p\equiv \pm 1\hspace{0.25em}\left({\rm{mod}}\hspace{0.3...

Full description

Bibliographic Details
Main Authors: Anitha K., Fathima I. Mumtaj, Vijayalakshmi A. R.
Format: Article
Language:English
Published: De Gruyter 2023-03-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2022-0563
_version_ 1797848628395507712
author Anitha K.
Fathima I. Mumtaj
Vijayalakshmi A. R.
author_facet Anitha K.
Fathima I. Mumtaj
Vijayalakshmi A. R.
author_sort Anitha K.
collection DOAJ
description We prove the lower bound for the number of Lucas non-Wieferich primes in arithmetic progressions. More precisely, for any given integer k≥2k\ge 2, there are ≫logx\gg \hspace{0.25em}\log x Lucas non-Wieferich primes p≤xp\le x such that p≡±1(modk)p\equiv \pm 1\hspace{0.25em}\left({\rm{mod}}\hspace{0.33em}k), assuming the abcabc conjecture for number fields.
first_indexed 2024-04-09T18:31:38Z
format Article
id doaj.art-1e63184a600b4782a1a189b030fa5c2e
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-04-09T18:31:38Z
publishDate 2023-03-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-1e63184a600b4782a1a189b030fa5c2e2023-04-11T17:07:17ZengDe GruyterOpen Mathematics2391-54552023-03-0121129330210.1515/math-2022-0563Lucas non-Wieferich primes in arithmetic progressions and the abc conjectureAnitha K.0Fathima I. Mumtaj1Vijayalakshmi A. R.2Department of Mathematics, SRM IST Ramapuram, Chennai 600089, IndiaDepartment of Mathematics, Sri Venkateswara College of Engineering, Affiliated to Anna University, Sriperumbudur, Chennai 602117, IndiaDepartment of Mathematics, Sri Venkateswara College of Engineering, Sriperumbudur, Chennai 602117, IndiaWe prove the lower bound for the number of Lucas non-Wieferich primes in arithmetic progressions. More precisely, for any given integer k≥2k\ge 2, there are ≫logx\gg \hspace{0.25em}\log x Lucas non-Wieferich primes p≤xp\le x such that p≡±1(modk)p\equiv \pm 1\hspace{0.25em}\left({\rm{mod}}\hspace{0.33em}k), assuming the abcabc conjecture for number fields.https://doi.org/10.1515/math-2022-0563abc conjecturearithmetic progressionslucas sequenceslucas non-wieferich primeswieferich primes11b2511b3911a4111n13
spellingShingle Anitha K.
Fathima I. Mumtaj
Vijayalakshmi A. R.
Lucas non-Wieferich primes in arithmetic progressions and the abc conjecture
Open Mathematics
abc conjecture
arithmetic progressions
lucas sequences
lucas non-wieferich primes
wieferich primes
11b25
11b39
11a41
11n13
title Lucas non-Wieferich primes in arithmetic progressions and the abc conjecture
title_full Lucas non-Wieferich primes in arithmetic progressions and the abc conjecture
title_fullStr Lucas non-Wieferich primes in arithmetic progressions and the abc conjecture
title_full_unstemmed Lucas non-Wieferich primes in arithmetic progressions and the abc conjecture
title_short Lucas non-Wieferich primes in arithmetic progressions and the abc conjecture
title_sort lucas non wieferich primes in arithmetic progressions and the abc conjecture
topic abc conjecture
arithmetic progressions
lucas sequences
lucas non-wieferich primes
wieferich primes
11b25
11b39
11a41
11n13
url https://doi.org/10.1515/math-2022-0563
work_keys_str_mv AT anithak lucasnonwieferichprimesinarithmeticprogressionsandtheabcconjecture
AT fathimaimumtaj lucasnonwieferichprimesinarithmeticprogressionsandtheabcconjecture
AT vijayalakshmiar lucasnonwieferichprimesinarithmeticprogressionsandtheabcconjecture