Lucas non-Wieferich primes in arithmetic progressions and the abc conjecture

We prove the lower bound for the number of Lucas non-Wieferich primes in arithmetic progressions. More precisely, for any given integer k≥2k\ge 2, there are ≫logx\gg \hspace{0.25em}\log x Lucas non-Wieferich primes p≤xp\le x such that p≡±1(modk)p\equiv \pm 1\hspace{0.25em}\left({\rm{mod}}\hspace{0.3...

Full description

Bibliographic Details
Main Authors: Anitha K., Fathima I. Mumtaj, Vijayalakshmi A. R.
Format: Article
Language:English
Published: De Gruyter 2023-03-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2022-0563

Similar Items