Calibration of regression-based models for prediction of temperature profile of asphalt layers using LTPP data
For analysis, design, and rehabilitation purposes of flexible pavements, the temperature profile of asphalt layers should be determined. The predictive models as an alternative to in-situ measurements, are rapid and easy methods to determine the temperature of asphalt layer at various depths. These...
Hlavní autoři: | Mohammad Sedighian-Fard, Nader Solatifar, Henrikas Sivilevičius |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Vilnius Gediminas Technical University
2023-03-01
|
Edice: | Journal of Civil Engineering and Management |
Témata: | |
On-line přístup: | https://jbem.vgtu.lt/index.php/JCEM/article/view/18611 |
Podobné jednotky
-
Development of An Artificial Neural Network Model for Asphalt Pavement Deterioration Using LTPP Data
Autor: Nader Solatifar, a další
Vydáno: (2020-02-01) -
LTPP data-based investigation on asphalt pavement performance using geospatial hot spot analysis and decision tree models
Autor: Kun Zhang, a další
Vydáno: (2023-06-01) -
Development of Asphalt Pavement Temperature Models for Oman
Autor: H.F. Hassan, a další
Vydáno: (2005-12-01) -
Research and Application of Hot In-Place Recycling Technology for Asphalt Pavement /
Autor: Sze, Banting W. P., author 651097, a další
Vydáno: (2021) -
Pavement surface course, stone mastic asphalt pavements, and asphalt concrete recycling
Autor: National Research Council (United States). Transportation Research Board
Vydáno: (1993)