Exploring high-performance viscosity index improver polymers via high-throughput molecular dynamics and explainable AI
Abstract Data-driven material innovation has the potential to revolutionize the traditional Edisonian process and significantly shorten development cycles. However, the scarcity of data in materials science and the poor interpretability of machine learning pose serious obstacles to the adoption of t...
Κύριοι συγγραφείς: | Rui Zhou, Luyao Bao, Weifeng Bu, Feng Zhou |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
Nature Portfolio
2025-03-01
|
Σειρά: | npj Computational Materials |
Διαθέσιμο Online: | https://doi.org/10.1038/s41524-025-01539-z |
Παρόμοια τεκμήρια
-
Local Viscosity Control Printing for High-Throughput Additive Manufacturing of Polymers
ανά: Siegel, Joshua E, κ.ά.
Έκδοση: (2017) -
Accelerated viscosity measurements of polymer solutions using high throughput experimentation and machine learning
ανά: Chua, Zhong Zhe
Έκδοση: (2021) -
High-throughput viscosity measurements for Newtonian fluids
ανά: Tan, Shu Zheng
Έκδοση: (2023) -
Study on Relations of High-Pressure Viscosity Properties and the Polymer Behavior of Various Viscosity Index Improver-Blended Oil (Part 2)
ανά: Hitoshi Hata, κ.ά.
Έκδοση: (2021-03-01) -
Structural and viscosity studies of dendritic hyper branched polymer as viscosity index improvers
ανά: Reham I. El-shazly, κ.ά.
Έκδοση: (2024-05-01)