Rate-Distortion Bounds for Kernel-Based Distortion Measures
Kernel methods have been used for turning linear learning algorithms into nonlinear ones. These nonlinear algorithms measure distances between data points by the distance in the kernel-induced feature space. In lossy data compression, the optimal tradeoff between the number of quantized points and t...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-07-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/19/7/336 |