Adversarial Defense on Harmony: Reverse Attack for Robust AI Models Against Adversarial Attacks
Deep neural networks (DNNs) are crucial in safety-critical applications but vulnerable to adversarial attacks, where subtle perturbations cause misclassification. Existing defense mechanisms struggle with small perturbations and face accuracy-robustness trade-offs. This study introduces the ...
Autori principali: | , , , , , , , |
---|---|
Natura: | Articolo |
Lingua: | English |
Pubblicazione: |
IEEE
2024-01-01
|
Serie: | IEEE Access |
Soggetti: | |
Accesso online: | https://ieeexplore.ieee.org/document/10766602/ |