Breast cancer recurrence prediction with deep neural network and feature optimization
Breast cancer remains a pervasive global health concern, necessitating continuous efforts to attain effectiveness of recurrence prediction schemes. This work focuses on breast cancer recurrence prediction using two advanced architectures such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2024-01-01
|
Series: | Automatika |
Subjects: | |
Online Access: | https://www.tandfonline.com/doi/10.1080/00051144.2023.2293280 |