An improved X-means and isolation forest based methodology for network traffic anomaly detection.
Anomaly detection in network traffic is becoming a challenging task due to the complexity of large-scale networks and the proliferation of various social network applications. In the actual industrial environment, only recently obtained unlabelled data can be used as the training set. The accuracy o...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2022-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0263423 |