A landscape metrics-based sample weighting approach for forecasting land cover change with deep learning models
Unaddressed imbalance of multitemporal land cover (LC) data reduces deep learning (DL) model usefulness to forecast changes. To manage geospatial data imbalance, there is a lack of specialized cost-sensitive learning strategies available. Sample weights are typically derived from training instance f...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2023-12-01
|
Series: | Geocarto International |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/10106049.2023.2240283 |