Control of Ni/β-Ga<sub>2</sub>O<sub>3</sub> Vertical Schottky Diode Output Parameters at Forward Bias by Insertion of a Graphene Layer

Controlling the Schottky barrier height (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mi>B</mi></msub></mrow></semantics></math><...

Full description

Bibliographic Details
Main Authors: Madani Labed, Nouredine Sengouga, You Seung Rim
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/12/5/827
_version_ 1797474214036373504
author Madani Labed
Nouredine Sengouga
You Seung Rim
author_facet Madani Labed
Nouredine Sengouga
You Seung Rim
author_sort Madani Labed
collection DOAJ
description Controlling the Schottky barrier height (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mi>B</mi></msub></mrow></semantics></math></inline-formula>) and other parameters of Schottky barrier diodes (SBD) is critical for many applications. In this work, the effect of inserting a graphene interfacial monolayer between a Ni Schottky metal and a β-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>Ga</mi></mrow><mn>2</mn></msub><msub><mi mathvariant="normal">O</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> semiconductor was investigated using numerical simulation. We confirmed that the simulation-based on Ni workfunction, interfacial trap concentration, and surface electron affinity was well-matched with the actual device characterization. Insertion of the graphene layer achieved a remarkable decrease in the barrier height (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mi>B</mi></msub></mrow></semantics></math></inline-formula>), from 1.32 to 0.43 eV, and in the series resistance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mi>S</mi></msub></mrow></semantics></math></inline-formula>), from 60.3 to 2.90<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mi mathvariant="normal">m</mi><mo>Ω</mo><mo>.</mo><msup><mrow><mi>cm</mi></mrow><mn>2</mn></msup></mrow></semantics></math></inline-formula>. However, the saturation current (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>J</mi><mi>S</mi></msub></mrow></semantics></math></inline-formula>) increased from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.26</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup><mo> </mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>8.3</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></semantics></math></inline-formula>(A/cm<sup>2</sup>). The effects of a graphene bandgap and workfunction were studied. With an increase in the graphene workfunction and bandgap, the Schottky barrier height and series resistance increased and the saturation current decreased. This behavior was related to the tunneling rate variations in the graphene layer. Therefore, control of Schottky barrier diode output parameters was achieved by monitoring the tunneling rate in the graphene layer (through the control of the bandgap) and by controlling the Schottky barrier height according to the Schottky–Mott role (through the control of the workfunction). Furthermore, a zero-bandgap and low-workfunction graphene layer behaves as an ohmic contact, which is in agreement with published results.
first_indexed 2024-03-09T20:27:55Z
format Article
id doaj.art-20e2c21d26a84ab1b88019b3ee3c86e1
institution Directory Open Access Journal
issn 2079-4991
language English
last_indexed 2024-03-09T20:27:55Z
publishDate 2022-03-01
publisher MDPI AG
record_format Article
series Nanomaterials
spelling doaj.art-20e2c21d26a84ab1b88019b3ee3c86e12023-11-23T23:30:47ZengMDPI AGNanomaterials2079-49912022-03-0112582710.3390/nano12050827Control of Ni/β-Ga<sub>2</sub>O<sub>3</sub> Vertical Schottky Diode Output Parameters at Forward Bias by Insertion of a Graphene LayerMadani Labed0Nouredine Sengouga1You Seung Rim2Laboratory of Semiconducting and Metallic Materials (LMSM), University of Biskra, Biskra 07000, AlgeriaLaboratory of Semiconducting and Metallic Materials (LMSM), University of Biskra, Biskra 07000, AlgeriaDepartment of Intelligent Mechatronics Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, KoreaControlling the Schottky barrier height (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mi>B</mi></msub></mrow></semantics></math></inline-formula>) and other parameters of Schottky barrier diodes (SBD) is critical for many applications. In this work, the effect of inserting a graphene interfacial monolayer between a Ni Schottky metal and a β-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>Ga</mi></mrow><mn>2</mn></msub><msub><mi mathvariant="normal">O</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> semiconductor was investigated using numerical simulation. We confirmed that the simulation-based on Ni workfunction, interfacial trap concentration, and surface electron affinity was well-matched with the actual device characterization. Insertion of the graphene layer achieved a remarkable decrease in the barrier height (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mi>B</mi></msub></mrow></semantics></math></inline-formula>), from 1.32 to 0.43 eV, and in the series resistance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mi>S</mi></msub></mrow></semantics></math></inline-formula>), from 60.3 to 2.90<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mi mathvariant="normal">m</mi><mo>Ω</mo><mo>.</mo><msup><mrow><mi>cm</mi></mrow><mn>2</mn></msup></mrow></semantics></math></inline-formula>. However, the saturation current (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>J</mi><mi>S</mi></msub></mrow></semantics></math></inline-formula>) increased from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.26</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup><mo> </mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>8.3</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></semantics></math></inline-formula>(A/cm<sup>2</sup>). The effects of a graphene bandgap and workfunction were studied. With an increase in the graphene workfunction and bandgap, the Schottky barrier height and series resistance increased and the saturation current decreased. This behavior was related to the tunneling rate variations in the graphene layer. Therefore, control of Schottky barrier diode output parameters was achieved by monitoring the tunneling rate in the graphene layer (through the control of the bandgap) and by controlling the Schottky barrier height according to the Schottky–Mott role (through the control of the workfunction). Furthermore, a zero-bandgap and low-workfunction graphene layer behaves as an ohmic contact, which is in agreement with published results.https://www.mdpi.com/2079-4991/12/5/827SBDβ-Ga<sub>2</sub>O<sub>3</sub>electron-beam evaporationinterfacial trapsgrapheneworkfunction
spellingShingle Madani Labed
Nouredine Sengouga
You Seung Rim
Control of Ni/β-Ga<sub>2</sub>O<sub>3</sub> Vertical Schottky Diode Output Parameters at Forward Bias by Insertion of a Graphene Layer
Nanomaterials
SBD
β-Ga<sub>2</sub>O<sub>3</sub>
electron-beam evaporation
interfacial traps
graphene
workfunction
title Control of Ni/β-Ga<sub>2</sub>O<sub>3</sub> Vertical Schottky Diode Output Parameters at Forward Bias by Insertion of a Graphene Layer
title_full Control of Ni/β-Ga<sub>2</sub>O<sub>3</sub> Vertical Schottky Diode Output Parameters at Forward Bias by Insertion of a Graphene Layer
title_fullStr Control of Ni/β-Ga<sub>2</sub>O<sub>3</sub> Vertical Schottky Diode Output Parameters at Forward Bias by Insertion of a Graphene Layer
title_full_unstemmed Control of Ni/β-Ga<sub>2</sub>O<sub>3</sub> Vertical Schottky Diode Output Parameters at Forward Bias by Insertion of a Graphene Layer
title_short Control of Ni/β-Ga<sub>2</sub>O<sub>3</sub> Vertical Schottky Diode Output Parameters at Forward Bias by Insertion of a Graphene Layer
title_sort control of ni β ga sub 2 sub o sub 3 sub vertical schottky diode output parameters at forward bias by insertion of a graphene layer
topic SBD
β-Ga<sub>2</sub>O<sub>3</sub>
electron-beam evaporation
interfacial traps
graphene
workfunction
url https://www.mdpi.com/2079-4991/12/5/827
work_keys_str_mv AT madanilabed controlofnibgasub2subosub3subverticalschottkydiodeoutputparametersatforwardbiasbyinsertionofagraphenelayer
AT nouredinesengouga controlofnibgasub2subosub3subverticalschottkydiodeoutputparametersatforwardbiasbyinsertionofagraphenelayer
AT youseungrim controlofnibgasub2subosub3subverticalschottkydiodeoutputparametersatforwardbiasbyinsertionofagraphenelayer