Control of Ni/β-Ga<sub>2</sub>O<sub>3</sub> Vertical Schottky Diode Output Parameters at Forward Bias by Insertion of a Graphene Layer
Controlling the Schottky barrier height (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mi>B</mi></msub></mrow></semantics></math><...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-03-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/12/5/827 |
_version_ | 1797474214036373504 |
---|---|
author | Madani Labed Nouredine Sengouga You Seung Rim |
author_facet | Madani Labed Nouredine Sengouga You Seung Rim |
author_sort | Madani Labed |
collection | DOAJ |
description | Controlling the Schottky barrier height (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mi>B</mi></msub></mrow></semantics></math></inline-formula>) and other parameters of Schottky barrier diodes (SBD) is critical for many applications. In this work, the effect of inserting a graphene interfacial monolayer between a Ni Schottky metal and a β-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>Ga</mi></mrow><mn>2</mn></msub><msub><mi mathvariant="normal">O</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> semiconductor was investigated using numerical simulation. We confirmed that the simulation-based on Ni workfunction, interfacial trap concentration, and surface electron affinity was well-matched with the actual device characterization. Insertion of the graphene layer achieved a remarkable decrease in the barrier height (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mi>B</mi></msub></mrow></semantics></math></inline-formula>), from 1.32 to 0.43 eV, and in the series resistance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mi>S</mi></msub></mrow></semantics></math></inline-formula>), from 60.3 to 2.90<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mi mathvariant="normal">m</mi><mo>Ω</mo><mo>.</mo><msup><mrow><mi>cm</mi></mrow><mn>2</mn></msup></mrow></semantics></math></inline-formula>. However, the saturation current (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>J</mi><mi>S</mi></msub></mrow></semantics></math></inline-formula>) increased from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.26</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup><mo> </mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>8.3</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></semantics></math></inline-formula>(A/cm<sup>2</sup>). The effects of a graphene bandgap and workfunction were studied. With an increase in the graphene workfunction and bandgap, the Schottky barrier height and series resistance increased and the saturation current decreased. This behavior was related to the tunneling rate variations in the graphene layer. Therefore, control of Schottky barrier diode output parameters was achieved by monitoring the tunneling rate in the graphene layer (through the control of the bandgap) and by controlling the Schottky barrier height according to the Schottky–Mott role (through the control of the workfunction). Furthermore, a zero-bandgap and low-workfunction graphene layer behaves as an ohmic contact, which is in agreement with published results. |
first_indexed | 2024-03-09T20:27:55Z |
format | Article |
id | doaj.art-20e2c21d26a84ab1b88019b3ee3c86e1 |
institution | Directory Open Access Journal |
issn | 2079-4991 |
language | English |
last_indexed | 2024-03-09T20:27:55Z |
publishDate | 2022-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Nanomaterials |
spelling | doaj.art-20e2c21d26a84ab1b88019b3ee3c86e12023-11-23T23:30:47ZengMDPI AGNanomaterials2079-49912022-03-0112582710.3390/nano12050827Control of Ni/β-Ga<sub>2</sub>O<sub>3</sub> Vertical Schottky Diode Output Parameters at Forward Bias by Insertion of a Graphene LayerMadani Labed0Nouredine Sengouga1You Seung Rim2Laboratory of Semiconducting and Metallic Materials (LMSM), University of Biskra, Biskra 07000, AlgeriaLaboratory of Semiconducting and Metallic Materials (LMSM), University of Biskra, Biskra 07000, AlgeriaDepartment of Intelligent Mechatronics Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, KoreaControlling the Schottky barrier height (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mi>B</mi></msub></mrow></semantics></math></inline-formula>) and other parameters of Schottky barrier diodes (SBD) is critical for many applications. In this work, the effect of inserting a graphene interfacial monolayer between a Ni Schottky metal and a β-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>Ga</mi></mrow><mn>2</mn></msub><msub><mi mathvariant="normal">O</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> semiconductor was investigated using numerical simulation. We confirmed that the simulation-based on Ni workfunction, interfacial trap concentration, and surface electron affinity was well-matched with the actual device characterization. Insertion of the graphene layer achieved a remarkable decrease in the barrier height (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mi>B</mi></msub></mrow></semantics></math></inline-formula>), from 1.32 to 0.43 eV, and in the series resistance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mi>S</mi></msub></mrow></semantics></math></inline-formula>), from 60.3 to 2.90<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mi mathvariant="normal">m</mi><mo>Ω</mo><mo>.</mo><msup><mrow><mi>cm</mi></mrow><mn>2</mn></msup></mrow></semantics></math></inline-formula>. However, the saturation current (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>J</mi><mi>S</mi></msub></mrow></semantics></math></inline-formula>) increased from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.26</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup><mo> </mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>8.3</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></semantics></math></inline-formula>(A/cm<sup>2</sup>). The effects of a graphene bandgap and workfunction were studied. With an increase in the graphene workfunction and bandgap, the Schottky barrier height and series resistance increased and the saturation current decreased. This behavior was related to the tunneling rate variations in the graphene layer. Therefore, control of Schottky barrier diode output parameters was achieved by monitoring the tunneling rate in the graphene layer (through the control of the bandgap) and by controlling the Schottky barrier height according to the Schottky–Mott role (through the control of the workfunction). Furthermore, a zero-bandgap and low-workfunction graphene layer behaves as an ohmic contact, which is in agreement with published results.https://www.mdpi.com/2079-4991/12/5/827SBDβ-Ga<sub>2</sub>O<sub>3</sub>electron-beam evaporationinterfacial trapsgrapheneworkfunction |
spellingShingle | Madani Labed Nouredine Sengouga You Seung Rim Control of Ni/β-Ga<sub>2</sub>O<sub>3</sub> Vertical Schottky Diode Output Parameters at Forward Bias by Insertion of a Graphene Layer Nanomaterials SBD β-Ga<sub>2</sub>O<sub>3</sub> electron-beam evaporation interfacial traps graphene workfunction |
title | Control of Ni/β-Ga<sub>2</sub>O<sub>3</sub> Vertical Schottky Diode Output Parameters at Forward Bias by Insertion of a Graphene Layer |
title_full | Control of Ni/β-Ga<sub>2</sub>O<sub>3</sub> Vertical Schottky Diode Output Parameters at Forward Bias by Insertion of a Graphene Layer |
title_fullStr | Control of Ni/β-Ga<sub>2</sub>O<sub>3</sub> Vertical Schottky Diode Output Parameters at Forward Bias by Insertion of a Graphene Layer |
title_full_unstemmed | Control of Ni/β-Ga<sub>2</sub>O<sub>3</sub> Vertical Schottky Diode Output Parameters at Forward Bias by Insertion of a Graphene Layer |
title_short | Control of Ni/β-Ga<sub>2</sub>O<sub>3</sub> Vertical Schottky Diode Output Parameters at Forward Bias by Insertion of a Graphene Layer |
title_sort | control of ni β ga sub 2 sub o sub 3 sub vertical schottky diode output parameters at forward bias by insertion of a graphene layer |
topic | SBD β-Ga<sub>2</sub>O<sub>3</sub> electron-beam evaporation interfacial traps graphene workfunction |
url | https://www.mdpi.com/2079-4991/12/5/827 |
work_keys_str_mv | AT madanilabed controlofnibgasub2subosub3subverticalschottkydiodeoutputparametersatforwardbiasbyinsertionofagraphenelayer AT nouredinesengouga controlofnibgasub2subosub3subverticalschottkydiodeoutputparametersatforwardbiasbyinsertionofagraphenelayer AT youseungrim controlofnibgasub2subosub3subverticalschottkydiodeoutputparametersatforwardbiasbyinsertionofagraphenelayer |