Interactive Causal Correlation Space Reshape for Multi-Label Classification
Most existing multi-label classification models focus on distance metrics and feature spare strategies to extract specific features of labels. Those models use the cosine similarity to construct the label correlation matrix to constraint solution space, and then mine the latent semantic information...
المؤلفون الرئيسيون: | Chao Zhang, Yusheng Cheng, Yibin Wang, Yuting Xu |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Universidad Internacional de La Rioja (UNIR)
2022-09-01
|
سلاسل: | International Journal of Interactive Multimedia and Artificial Intelligence |
الموضوعات: | |
الوصول للمادة أونلاين: | https://www.ijimai.org/journal/bibcite/reference/3159 |
مواد مشابهة
-
Application of Label Correlation in Multi-Label Classification: A Survey
حسب: Shan Huang, وآخرون
منشور في: (2024-10-01) -
Robust Multi-Label Classification with Enhanced Global and Local Label Correlation
حسب: Tianna Zhao, وآخرون
منشور في: (2022-05-01) -
Soft-label recover based label-specific features learning
حسب: Jiansheng Jiang, وآخرون
منشور في: (2024-10-01) -
ATC-NLSP: Prediction of the Classes of Anatomical Therapeutic Chemicals Using a Network-Based Label Space Partition Method
حسب: Xiangeng Wang, وآخرون
منشور في: (2019-09-01) -
Joint Label-Density-Margin Space and Extreme Elastic Net for Label-Specific Features
حسب: Gensheng Pei, وآخرون
منشور في: (2019-01-01)