Interactive Causal Correlation Space Reshape for Multi-Label Classification
Most existing multi-label classification models focus on distance metrics and feature spare strategies to extract specific features of labels. Those models use the cosine similarity to construct the label correlation matrix to constraint solution space, and then mine the latent semantic information...
Main Authors: | Chao Zhang, Yusheng Cheng, Yibin Wang, Yuting Xu |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
Universidad Internacional de La Rioja (UNIR)
2022-09-01
|
סדרה: | International Journal of Interactive Multimedia and Artificial Intelligence |
נושאים: | |
גישה מקוונת: | https://www.ijimai.org/journal/bibcite/reference/3159 |
פריטים דומים
-
Application of Label Correlation in Multi-Label Classification: A Survey
מאת: Shan Huang, et al.
יצא לאור: (2024-10-01) -
Robust Multi-Label Classification with Enhanced Global and Local Label Correlation
מאת: Tianna Zhao, et al.
יצא לאור: (2022-05-01) -
Soft-label recover based label-specific features learning
מאת: Jiansheng Jiang, et al.
יצא לאור: (2024-10-01) -
ATC-NLSP: Prediction of the Classes of Anatomical Therapeutic Chemicals Using a Network-Based Label Space Partition Method
מאת: Xiangeng Wang, et al.
יצא לאור: (2019-09-01) -
Joint Label-Density-Margin Space and Extreme Elastic Net for Label-Specific Features
מאת: Gensheng Pei, et al.
יצא לאור: (2019-01-01)