Interactive Causal Correlation Space Reshape for Multi-Label Classification
Most existing multi-label classification models focus on distance metrics and feature spare strategies to extract specific features of labels. Those models use the cosine similarity to construct the label correlation matrix to constraint solution space, and then mine the latent semantic information...
Główni autorzy: | Chao Zhang, Yusheng Cheng, Yibin Wang, Yuting Xu |
---|---|
Format: | Artykuł |
Język: | English |
Wydane: |
Universidad Internacional de La Rioja (UNIR)
2022-09-01
|
Seria: | International Journal of Interactive Multimedia and Artificial Intelligence |
Hasła przedmiotowe: | |
Dostęp online: | https://www.ijimai.org/journal/bibcite/reference/3159 |
Podobne zapisy
-
Application of Label Correlation in Multi-Label Classification: A Survey
od: Shan Huang, i wsp.
Wydane: (2024-10-01) -
Robust Multi-Label Classification with Enhanced Global and Local Label Correlation
od: Tianna Zhao, i wsp.
Wydane: (2022-05-01) -
Soft-label recover based label-specific features learning
od: Jiansheng Jiang, i wsp.
Wydane: (2024-10-01) -
ATC-NLSP: Prediction of the Classes of Anatomical Therapeutic Chemicals Using a Network-Based Label Space Partition Method
od: Xiangeng Wang, i wsp.
Wydane: (2019-09-01) -
Joint Label-Density-Margin Space and Extreme Elastic Net for Label-Specific Features
od: Gensheng Pei, i wsp.
Wydane: (2019-01-01)