Interactive Causal Correlation Space Reshape for Multi-Label Classification
Most existing multi-label classification models focus on distance metrics and feature spare strategies to extract specific features of labels. Those models use the cosine similarity to construct the label correlation matrix to constraint solution space, and then mine the latent semantic information...
Главные авторы: | Chao Zhang, Yusheng Cheng, Yibin Wang, Yuting Xu |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
Universidad Internacional de La Rioja (UNIR)
2022-09-01
|
Серии: | International Journal of Interactive Multimedia and Artificial Intelligence |
Предметы: | |
Online-ссылка: | https://www.ijimai.org/journal/bibcite/reference/3159 |
Схожие документы
-
Application of Label Correlation in Multi-Label Classification: A Survey
по: Shan Huang, и др.
Опубликовано: (2024-10-01) -
Robust Multi-Label Classification with Enhanced Global and Local Label Correlation
по: Tianna Zhao, и др.
Опубликовано: (2022-05-01) -
Soft-label recover based label-specific features learning
по: Jiansheng Jiang, и др.
Опубликовано: (2024-10-01) -
ATC-NLSP: Prediction of the Classes of Anatomical Therapeutic Chemicals Using a Network-Based Label Space Partition Method
по: Xiangeng Wang, и др.
Опубликовано: (2019-09-01) -
Joint Label-Density-Margin Space and Extreme Elastic Net for Label-Specific Features
по: Gensheng Pei, и др.
Опубликовано: (2019-01-01)