A Session-Based Customer Preference Learning Method by Using the Gated Recurrent Units With Attention Function
In this paper, we investigate an attention function combined with the gated recurrent units (GRUs), named GRUA, to raise the accuracy of the customer preference prediction. The attention function extracts the important product features by using the time-bias parameter and the term frequency-inverse...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8628957/ |