Solving a Robust Balancing & Sequencing of Robotic U Shape Assembly Line Problem by Harmony Search Algorithm

In the recent years, robots have been widely used in assembly systems as called robotic assembly lines where a set of tasks have to be assigned to stations and each station needs to select one of the different robots to process the assigned tasks. Our focus is on u-type layouts because they are wide...

Full description

Bibliographic Details
Main Authors: Mahsa Sobhi shojaa, Parvaneh Samouei
Format: Article
Language:fas
Published: Allameh Tabataba'i University Press 2021-12-01
Series:Muṭāli̒āt-i Mudīriyyat-i Ṣan̒atī
Subjects:
Online Access:https://jims.atu.ac.ir/article_13507_7d0e956968c05513a2ff39a5bef15ced.pdf
Description
Summary:In the recent years, robots have been widely used in assembly systems as called robotic assembly lines where a set of tasks have to be assigned to stations and each station needs to select one of the different robots to process the assigned tasks. Our focus is on u-type layouts because they are widely employed in many industries due to their efficiency and flexibility . In these lines, a worker can be assigned to multiple stations located at entrance and exit sides. However, in many realistic situations, robots may be unavailable during the scheduling horizon for different reasons, such as breakdowns. This research deals with line balancing under uncertainty The Objective in this research is minimizing the cycle time for a given number of workstations and minimizing robot cost.This research deals with line balancing under uncertainty and presents one robust optimization model for balancing and sequencing of u-shaped robotic assembly line with considering set up times between task, failure robot times and preventive maintenance times for every robot. Since the NP-hard nature of the problem, multi-objective harmony search is developed to solve it. Numerical experiments also demonstrated that by increasing uncertainty level, the objective function values, cost and cycle times (minimum, maximum and average) increased. performance of the robust approach by the results, shows that in real conditions, considering the probability of event failure, values of cycle time and cost change significantly, which indicates the need to consider uncertainty, especially failure in robotic assembly lines.
ISSN:2251-8029
2476-602X