Atomic resolution with high-eigenmode tapping mode atomic force microscopy

Atomic surface structure imaging is instrumental for the understanding of surface-related phenomena. Here, we show that conventional tapping mode atomic force microscopy with high cantilever eigenmodes and subnanometer amplitudes allow routine atomic imaging at atmospheric pressures. We identify the...

Full description

Bibliographic Details
Main Authors: N. Severin, A. R. Dzhanoev, H. Lin, A. Rauf, S. Kirstein, C.-A. Palma, I. M. Sokolov, J. P. Rabe
Format: Article
Language:English
Published: American Physical Society 2022-05-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.4.023149
_version_ 1797210701691879424
author N. Severin
A. R. Dzhanoev
H. Lin
A. Rauf
S. Kirstein
C.-A. Palma
I. M. Sokolov
J. P. Rabe
author_facet N. Severin
A. R. Dzhanoev
H. Lin
A. Rauf
S. Kirstein
C.-A. Palma
I. M. Sokolov
J. P. Rabe
author_sort N. Severin
collection DOAJ
description Atomic surface structure imaging is instrumental for the understanding of surface-related phenomena. Here, we show that conventional tapping mode atomic force microscopy with high cantilever eigenmodes and subnanometer amplitudes allow routine atomic imaging at atmospheric pressures. We identify the reasons for failure of atomic resolution imaging employing low eigenmodes. Strong tip-surface interactions cause significant differences between the oscillatory behaviors of the inclination of the cantilever as detected by conventional instruments and of the vertical position of the tip, which prevents correct functioning of instrumental feedback control loops. However, high effective spring constants of high eigenmodes make it possible to overcome the problem. Furthermore, the combination of high effective elastic constants of high cantilever eigenmodes with the high flexibility of the cantilever substantially enhances the imaging stability, thereby universally allowing atomic imaging of solid surfaces in gaseous environments and at elevated temperatures. Demonstrated imaging examples include single sulfur vacancies at the surface of MoS_{2} crystals imaged at temperatures ranging from room temperature to 250°C and potassium ions on hydrophilic and highly adhesive muscovite mica surfaces. Moreover, the high imaging stability allows knocking atoms off the MoS_{2} surface by hard tapping, indicating the potential for ultrahigh resolution lithography.
first_indexed 2024-04-24T10:14:47Z
format Article
id doaj.art-23b2029bc4fb4ea8b4dabdc39388cd60
institution Directory Open Access Journal
issn 2643-1564
language English
last_indexed 2024-04-24T10:14:47Z
publishDate 2022-05-01
publisher American Physical Society
record_format Article
series Physical Review Research
spelling doaj.art-23b2029bc4fb4ea8b4dabdc39388cd602024-04-12T17:21:10ZengAmerican Physical SocietyPhysical Review Research2643-15642022-05-014202314910.1103/PhysRevResearch.4.023149Atomic resolution with high-eigenmode tapping mode atomic force microscopyN. SeverinA. R. DzhanoevH. LinA. RaufS. KirsteinC.-A. PalmaI. M. SokolovJ. P. RabeAtomic surface structure imaging is instrumental for the understanding of surface-related phenomena. Here, we show that conventional tapping mode atomic force microscopy with high cantilever eigenmodes and subnanometer amplitudes allow routine atomic imaging at atmospheric pressures. We identify the reasons for failure of atomic resolution imaging employing low eigenmodes. Strong tip-surface interactions cause significant differences between the oscillatory behaviors of the inclination of the cantilever as detected by conventional instruments and of the vertical position of the tip, which prevents correct functioning of instrumental feedback control loops. However, high effective spring constants of high eigenmodes make it possible to overcome the problem. Furthermore, the combination of high effective elastic constants of high cantilever eigenmodes with the high flexibility of the cantilever substantially enhances the imaging stability, thereby universally allowing atomic imaging of solid surfaces in gaseous environments and at elevated temperatures. Demonstrated imaging examples include single sulfur vacancies at the surface of MoS_{2} crystals imaged at temperatures ranging from room temperature to 250°C and potassium ions on hydrophilic and highly adhesive muscovite mica surfaces. Moreover, the high imaging stability allows knocking atoms off the MoS_{2} surface by hard tapping, indicating the potential for ultrahigh resolution lithography.http://doi.org/10.1103/PhysRevResearch.4.023149
spellingShingle N. Severin
A. R. Dzhanoev
H. Lin
A. Rauf
S. Kirstein
C.-A. Palma
I. M. Sokolov
J. P. Rabe
Atomic resolution with high-eigenmode tapping mode atomic force microscopy
Physical Review Research
title Atomic resolution with high-eigenmode tapping mode atomic force microscopy
title_full Atomic resolution with high-eigenmode tapping mode atomic force microscopy
title_fullStr Atomic resolution with high-eigenmode tapping mode atomic force microscopy
title_full_unstemmed Atomic resolution with high-eigenmode tapping mode atomic force microscopy
title_short Atomic resolution with high-eigenmode tapping mode atomic force microscopy
title_sort atomic resolution with high eigenmode tapping mode atomic force microscopy
url http://doi.org/10.1103/PhysRevResearch.4.023149
work_keys_str_mv AT nseverin atomicresolutionwithhigheigenmodetappingmodeatomicforcemicroscopy
AT ardzhanoev atomicresolutionwithhigheigenmodetappingmodeatomicforcemicroscopy
AT hlin atomicresolutionwithhigheigenmodetappingmodeatomicforcemicroscopy
AT arauf atomicresolutionwithhigheigenmodetappingmodeatomicforcemicroscopy
AT skirstein atomicresolutionwithhigheigenmodetappingmodeatomicforcemicroscopy
AT capalma atomicresolutionwithhigheigenmodetappingmodeatomicforcemicroscopy
AT imsokolov atomicresolutionwithhigheigenmodetappingmodeatomicforcemicroscopy
AT jprabe atomicresolutionwithhigheigenmodetappingmodeatomicforcemicroscopy