Tiny adversarial multi-objective one-shot neural architecture search
Abstract The widely employed tiny neural networks (TNNs) in mobile devices are vulnerable to adversarial attacks. However, more advanced research on the robustness of TNNs is highly in demand. This work focuses on improving the robustness of TNNs without sacrificing the model’s accuracy. To find the...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer
2023-07-01
|
Series: | Complex & Intelligent Systems |
Subjects: | |
Online Access: | https://doi.org/10.1007/s40747-023-01139-8 |