Constrained Adjusted Maximum a Posteriori Estimation of Bayesian Network Parameters
Maximum a posteriori estimation (MAP) with Dirichlet prior has been shown to be effective in improving the parameter learning of Bayesian networks when the available data are insufficient. Given no extra domain knowledge, uniform prior is often considered for regularization. However, when the underl...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-09-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/23/10/1283 |