Constrained Adjusted Maximum a Posteriori Estimation of Bayesian Network Parameters

Maximum a posteriori estimation (MAP) with Dirichlet prior has been shown to be effective in improving the parameter learning of Bayesian networks when the available data are insufficient. Given no extra domain knowledge, uniform prior is often considered for regularization. However, when the underl...

Full description

Bibliographic Details
Main Authors: Ruohai Di, Peng Wang, Chuchao He, Zhigao Guo
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/10/1283
Description
Summary:Maximum a posteriori estimation (MAP) with Dirichlet prior has been shown to be effective in improving the parameter learning of Bayesian networks when the available data are insufficient. Given no extra domain knowledge, uniform prior is often considered for regularization. However, when the underlying parameter distribution is non-uniform or skewed, uniform prior does not work well, and a more informative prior is required. In reality, unless the domain experts are extremely unfamiliar with the network, they would be able to provide some reliable knowledge on the studied network. With that knowledge, we can automatically refine informative priors and select reasonable equivalent sample size (ESS). In this paper, considering the parameter constraints that are transformed from the domain knowledge, we propose a Constrained adjusted Maximum a Posteriori (CaMAP) estimation method, which is featured by two novel techniques. First, to draw an informative prior distribution (or prior shape), we present a novel sampling method that can construct the prior distribution from the constraints. Then, to find the optimal ESS (or prior strength), we derive constraints on the ESS from the parameter constraints and select the optimal ESS by cross-validation. Numerical experiments show that the proposed method is superior to other learning algorithms.
ISSN:1099-4300