Exploring Deep Learning to Predict Coconut Milk Adulteration Using FT-NIR and Micro-NIR Spectroscopy
Accurately identifying adulterants in agriculture and food products is associated with preventing food safety and commercial fraud activities. However, a rapid, accurate, and robust prediction model for adulteration detection is hard to achieve in practice. Therefore, this study aimed to explore dee...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-04-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/24/7/2362 |