Classification of Photoplethysmographic Signal Quality with Deep Convolution Neural Networks for Accurate Measurement of Cardiac Stroke Volume
As photoplethysmographic (PPG) signals are comprised of numerous pieces of important physiological information, they have been widely employed to measure many physiological parameters. However, only a high-quality PPG signal can provide a reliable physiological assessment. Unfortunately, PPG signals...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/10/13/4612 |