New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming

Abstract Background Cholangiocarcinoma (CCA) is still a deadly tumour. Histological and molecular aspects of thioacetamide (TAA)-induced intrahepatic CCA (iCCA) in rats mimic those of human iCCA. Carcinogenic changes and therapeutic vulnerabilities in CCA may be captured by molecular investigations...

Full description

Bibliographic Details
Main Authors: Leticia Colyn, Gloria Alvarez-Sola, M. Ujue Latasa, Iker Uriarte, Jose M. Herranz, Maria Arechederra, George Vlachogiannis, Colin Rae, Antonio Pineda-Lucena, Andrea Casadei-Gardini, Federica Pedica, Luca Aldrighetti, Angeles López-López, Angeles López-Gonzálvez, Coral Barbas, Sergio Ciordia, Sebastiaan M. Van Liempd, Juan M. Falcón-Pérez, Jesus Urman, Bruno Sangro, Silve Vicent, Maria J. Iraburu, Felipe Prosper, Leonard J. Nelson, Jesus M. Banales, Maria Luz Martinez-Chantar, Jose J. G. Marin, Chiara Braconi, Christian Trautwein, Fernando J. Corrales, F. Javier Cubero, Carmen Berasain, Maite G. Fernandez-Barrena, Matias A. Avila
Format: Article
Language:English
Published: BMC 2022-05-01
Series:Journal of Experimental & Clinical Cancer Research
Subjects:
Online Access:https://doi.org/10.1186/s13046-022-02386-2
_version_ 1818207015015546880
author Leticia Colyn
Gloria Alvarez-Sola
M. Ujue Latasa
Iker Uriarte
Jose M. Herranz
Maria Arechederra
George Vlachogiannis
Colin Rae
Antonio Pineda-Lucena
Andrea Casadei-Gardini
Federica Pedica
Luca Aldrighetti
Angeles López-López
Angeles López-Gonzálvez
Coral Barbas
Sergio Ciordia
Sebastiaan M. Van Liempd
Juan M. Falcón-Pérez
Jesus Urman
Bruno Sangro
Silve Vicent
Maria J. Iraburu
Felipe Prosper
Leonard J. Nelson
Jesus M. Banales
Maria Luz Martinez-Chantar
Jose J. G. Marin
Chiara Braconi
Christian Trautwein
Fernando J. Corrales
F. Javier Cubero
Carmen Berasain
Maite G. Fernandez-Barrena
Matias A. Avila
author_facet Leticia Colyn
Gloria Alvarez-Sola
M. Ujue Latasa
Iker Uriarte
Jose M. Herranz
Maria Arechederra
George Vlachogiannis
Colin Rae
Antonio Pineda-Lucena
Andrea Casadei-Gardini
Federica Pedica
Luca Aldrighetti
Angeles López-López
Angeles López-Gonzálvez
Coral Barbas
Sergio Ciordia
Sebastiaan M. Van Liempd
Juan M. Falcón-Pérez
Jesus Urman
Bruno Sangro
Silve Vicent
Maria J. Iraburu
Felipe Prosper
Leonard J. Nelson
Jesus M. Banales
Maria Luz Martinez-Chantar
Jose J. G. Marin
Chiara Braconi
Christian Trautwein
Fernando J. Corrales
F. Javier Cubero
Carmen Berasain
Maite G. Fernandez-Barrena
Matias A. Avila
author_sort Leticia Colyn
collection DOAJ
description Abstract Background Cholangiocarcinoma (CCA) is still a deadly tumour. Histological and molecular aspects of thioacetamide (TAA)-induced intrahepatic CCA (iCCA) in rats mimic those of human iCCA. Carcinogenic changes and therapeutic vulnerabilities in CCA may be captured by molecular investigations in bile, where we performed bile proteomic and metabolomic analyses that help discovery yet unknown pathways relevant to human iCCA. Methods Cholangiocarcinogenesis was induced in rats (TAA) and mice (Jnk Δhepa  + CCl4 + DEN model). We performed proteomic and metabolomic analyses in bile from control and CCA-bearing rats. Differential expression was validated in rat and human CCAs. Mechanisms were addressed in human CCA cells, including Huh28-KRASG12D cells. Cell signaling, growth, gene regulation and [U-13C]-D-glucose-serine fluxomics analyses were performed. In vivo studies were performed in the clinically-relevant iCCA mouse model. Results Pathways related to inflammation, oxidative stress and glucose metabolism were identified by proteomic analysis. Oxidative stress and high amounts of the oncogenesis-supporting amino acids serine and glycine were discovered by metabolomic studies. Most relevant hits were confirmed in rat and human CCAs (TCGA). Activation of interleukin-6 (IL6) and epidermal growth factor receptor (EGFR) pathways, and key genes in cancer-related glucose metabolic reprogramming, were validated in TAA-CCAs. In TAA-CCAs, G9a, an epigenetic pro-tumorigenic writer, was also increased. We show that EGFR signaling and mutant KRASG12D can both activate IL6 production in CCA cells. Furthermore, phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine-glycine pathway, was upregulated in human iCCA correlating with G9a expression. In a G9a activity-dependent manner, KRASG12D promoted PHGDH expression, glucose flow towards serine synthesis, and increased CCA cell viability. KRASG12D CAA cells were more sensitive to PHGDH and G9a inhibition than controls. In mouse iCCA, G9a pharmacological targeting reduced PHGDH expression. Conclusions In CCA, we identified new pro-tumorigenic mechanisms: Activation of EGFR signaling or KRAS mutation drives IL6 expression in tumour cells; Glucose metabolism reprogramming in iCCA includes activation of the serine-glycine pathway; Mutant KRAS drives PHGDH expression in a G9a-dependent manner; PHGDH and G9a emerge as therapeutic targets in iCCA.
first_indexed 2024-12-12T04:22:12Z
format Article
id doaj.art-278c7dac66c24c988487ac905912005b
institution Directory Open Access Journal
issn 1756-9966
language English
last_indexed 2024-12-12T04:22:12Z
publishDate 2022-05-01
publisher BMC
record_format Article
series Journal of Experimental & Clinical Cancer Research
spelling doaj.art-278c7dac66c24c988487ac905912005b2022-12-22T00:38:18ZengBMCJournal of Experimental & Clinical Cancer Research1756-99662022-05-0141111810.1186/s13046-022-02386-2New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogrammingLeticia Colyn0Gloria Alvarez-Sola1M. Ujue Latasa2Iker Uriarte3Jose M. Herranz4Maria Arechederra5George Vlachogiannis6Colin Rae7Antonio Pineda-Lucena8Andrea Casadei-Gardini9Federica Pedica10Luca Aldrighetti11Angeles López-López12Angeles López-Gonzálvez13Coral Barbas14Sergio Ciordia15Sebastiaan M. Van Liempd16Juan M. Falcón-Pérez17Jesus Urman18Bruno Sangro19Silve Vicent20Maria J. Iraburu21Felipe Prosper22Leonard J. Nelson23Jesus M. Banales24Maria Luz Martinez-Chantar25Jose J. G. Marin26Chiara Braconi27Christian Trautwein28Fernando J. Corrales29F. Javier Cubero30Carmen Berasain31Maite G. Fernandez-Barrena32Matias A. Avila33Hepatology Program, CIMA, Universidad de NavarraHepatology Program, CIMA, Universidad de NavarraHepatology Program, CIMA, Universidad de NavarraHepatology Program, CIMA, Universidad de NavarraHepatology Program, CIMA, Universidad de NavarraHepatology Program, CIMA, Universidad de NavarraDivision of Surgery and Cancer, Imperial College LondonInstitute of Cancer Sciences, The University of GlasgowMolecular Therapies Program, CIMA, Universidad de NavarraDepartment of Oncology, San Raffaele HospitalDepartment of Experimental Oncology, Pathology Unit, IRCCS San Raffaele Scientific InstituteHepatobiliary Surgery Division, Vita-Salute San Raffaele University, IRCCS San Raffaele HospitalCentro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia University San Pablo CEUCentro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia University San Pablo CEUCentro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia University San Pablo CEUFunctional Proteomics Laboratory, CNB-CSIC, Proteored-ISCIIIExosomes Laboratory and Metabolomics Platform, CIC bioGUNE-BRTACIBERehdInstituto de Investigaciones Sanitarias de Navarra IdiSNACIBERehdInstituto de Investigaciones Sanitarias de Navarra IdiSNADepartment of Biochemistry and Genetics, University of NavarraOncohematology Program, CIMA, Universidad de NavarraInstitute of Engineering, School of Engineering, Faraday Building, The University of EdimburghCIBERehdCIBERehdCIBERehdInstitute of Cancer Sciences, The University of GlasgowDepartment of Internal Medicine III, University Hospital, RWTH AachenCIBERehdCIBERehdHepatology Program, CIMA, Universidad de NavarraHepatology Program, CIMA, Universidad de NavarraHepatology Program, CIMA, Universidad de NavarraAbstract Background Cholangiocarcinoma (CCA) is still a deadly tumour. Histological and molecular aspects of thioacetamide (TAA)-induced intrahepatic CCA (iCCA) in rats mimic those of human iCCA. Carcinogenic changes and therapeutic vulnerabilities in CCA may be captured by molecular investigations in bile, where we performed bile proteomic and metabolomic analyses that help discovery yet unknown pathways relevant to human iCCA. Methods Cholangiocarcinogenesis was induced in rats (TAA) and mice (Jnk Δhepa  + CCl4 + DEN model). We performed proteomic and metabolomic analyses in bile from control and CCA-bearing rats. Differential expression was validated in rat and human CCAs. Mechanisms were addressed in human CCA cells, including Huh28-KRASG12D cells. Cell signaling, growth, gene regulation and [U-13C]-D-glucose-serine fluxomics analyses were performed. In vivo studies were performed in the clinically-relevant iCCA mouse model. Results Pathways related to inflammation, oxidative stress and glucose metabolism were identified by proteomic analysis. Oxidative stress and high amounts of the oncogenesis-supporting amino acids serine and glycine were discovered by metabolomic studies. Most relevant hits were confirmed in rat and human CCAs (TCGA). Activation of interleukin-6 (IL6) and epidermal growth factor receptor (EGFR) pathways, and key genes in cancer-related glucose metabolic reprogramming, were validated in TAA-CCAs. In TAA-CCAs, G9a, an epigenetic pro-tumorigenic writer, was also increased. We show that EGFR signaling and mutant KRASG12D can both activate IL6 production in CCA cells. Furthermore, phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine-glycine pathway, was upregulated in human iCCA correlating with G9a expression. In a G9a activity-dependent manner, KRASG12D promoted PHGDH expression, glucose flow towards serine synthesis, and increased CCA cell viability. KRASG12D CAA cells were more sensitive to PHGDH and G9a inhibition than controls. In mouse iCCA, G9a pharmacological targeting reduced PHGDH expression. Conclusions In CCA, we identified new pro-tumorigenic mechanisms: Activation of EGFR signaling or KRAS mutation drives IL6 expression in tumour cells; Glucose metabolism reprogramming in iCCA includes activation of the serine-glycine pathway; Mutant KRAS drives PHGDH expression in a G9a-dependent manner; PHGDH and G9a emerge as therapeutic targets in iCCA.https://doi.org/10.1186/s13046-022-02386-2CholangiocarcinomaBileInflammationInterleukin-6KRASG9a histone methyl-transferase
spellingShingle Leticia Colyn
Gloria Alvarez-Sola
M. Ujue Latasa
Iker Uriarte
Jose M. Herranz
Maria Arechederra
George Vlachogiannis
Colin Rae
Antonio Pineda-Lucena
Andrea Casadei-Gardini
Federica Pedica
Luca Aldrighetti
Angeles López-López
Angeles López-Gonzálvez
Coral Barbas
Sergio Ciordia
Sebastiaan M. Van Liempd
Juan M. Falcón-Pérez
Jesus Urman
Bruno Sangro
Silve Vicent
Maria J. Iraburu
Felipe Prosper
Leonard J. Nelson
Jesus M. Banales
Maria Luz Martinez-Chantar
Jose J. G. Marin
Chiara Braconi
Christian Trautwein
Fernando J. Corrales
F. Javier Cubero
Carmen Berasain
Maite G. Fernandez-Barrena
Matias A. Avila
New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming
Journal of Experimental & Clinical Cancer Research
Cholangiocarcinoma
Bile
Inflammation
Interleukin-6
KRAS
G9a histone methyl-transferase
title New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming
title_full New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming
title_fullStr New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming
title_full_unstemmed New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming
title_short New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming
title_sort new molecular mechanisms in cholangiocarcinoma signals triggering interleukin 6 production in tumor cells and kras co opted epigenetic mediators driving metabolic reprogramming
topic Cholangiocarcinoma
Bile
Inflammation
Interleukin-6
KRAS
G9a histone methyl-transferase
url https://doi.org/10.1186/s13046-022-02386-2
work_keys_str_mv AT leticiacolyn newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT gloriaalvarezsola newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT mujuelatasa newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT ikeruriarte newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT josemherranz newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT mariaarechederra newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT georgevlachogiannis newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT colinrae newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT antoniopinedalucena newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT andreacasadeigardini newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT federicapedica newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT lucaaldrighetti newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT angeleslopezlopez newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT angeleslopezgonzalvez newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT coralbarbas newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT sergiociordia newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT sebastiaanmvanliempd newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT juanmfalconperez newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT jesusurman newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT brunosangro newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT silvevicent newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT mariajiraburu newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT felipeprosper newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT leonardjnelson newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT jesusmbanales newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT marialuzmartinezchantar newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT josejgmarin newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT chiarabraconi newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT christiantrautwein newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT fernandojcorrales newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT fjaviercubero newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT carmenberasain newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT maitegfernandezbarrena newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming
AT matiasaavila newmolecularmechanismsincholangiocarcinomasignalstriggeringinterleukin6productionintumorcellsandkrascooptedepigeneticmediatorsdrivingmetabolicreprogramming