Predicting triaxial compressive strength of high-temperature treated rock using machine learning techniques
The accurate prediction of the strength of rocks after high-temperature treatment is important for the safety maintenance of rock in deep underground engineering. Five machine learning (ML) techniques were adopted in this study, i.e. back propagation neural network (BPNN), AdaBoost-based classificat...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-08-01
|
Series: | Journal of Rock Mechanics and Geotechnical Engineering |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S167477552200227X |