Insulin modulates the frequency of Ca2+ oscillations in mouse pancreatic islets.
Pancreatic islets can adapt to oscillatory glucose to produce synchronous insulin pulses. Can islets adapt to other oscillatory stimuli, specifically insulin? To answer this question, we stimulated islets with pulses of exogenous insulin and measured their Ca2+ oscillations. We observed that suffici...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2017-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5573301?pdf=render |
_version_ | 1819131198785454080 |
---|---|
author | Boah Lee Taegeun Song Kayoung Lee Jaeyoon Kim Per-Olof Berggren Sung Ho Ryu Junghyo Jo |
author_facet | Boah Lee Taegeun Song Kayoung Lee Jaeyoon Kim Per-Olof Berggren Sung Ho Ryu Junghyo Jo |
author_sort | Boah Lee |
collection | DOAJ |
description | Pancreatic islets can adapt to oscillatory glucose to produce synchronous insulin pulses. Can islets adapt to other oscillatory stimuli, specifically insulin? To answer this question, we stimulated islets with pulses of exogenous insulin and measured their Ca2+ oscillations. We observed that sufficiently high insulin (> 500 nM) with an optimal pulse period (~ 4 min) could make islets to produce synchronous Ca2+ oscillations. Glucose and insulin, which are key stimulatory factors of islets, modulate islet Ca2+ oscillations differently. Glucose increases the active-to-silent ratio of phases, whereas insulin increases the period of the oscillation. To examine the dual modulation, we adopted a phase oscillator model that incorporated the phase and frequency modulations. This mathematical model showed that out-of-phase oscillations of glucose and insulin were more effective at synchronizing islet Ca2+ oscillations than in-phase stimuli. This finding suggests that a phase shift in glucose and insulin oscillations can enhance inter-islet synchronization. |
first_indexed | 2024-12-22T09:11:42Z |
format | Article |
id | doaj.art-28e06793360844a0b829e0e16808fc64 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-22T09:11:42Z |
publishDate | 2017-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-28e06793360844a0b829e0e16808fc642022-12-21T18:31:24ZengPublic Library of Science (PLoS)PLoS ONE1932-62032017-01-01128e018356910.1371/journal.pone.0183569Insulin modulates the frequency of Ca2+ oscillations in mouse pancreatic islets.Boah LeeTaegeun SongKayoung LeeJaeyoon KimPer-Olof BerggrenSung Ho RyuJunghyo JoPancreatic islets can adapt to oscillatory glucose to produce synchronous insulin pulses. Can islets adapt to other oscillatory stimuli, specifically insulin? To answer this question, we stimulated islets with pulses of exogenous insulin and measured their Ca2+ oscillations. We observed that sufficiently high insulin (> 500 nM) with an optimal pulse period (~ 4 min) could make islets to produce synchronous Ca2+ oscillations. Glucose and insulin, which are key stimulatory factors of islets, modulate islet Ca2+ oscillations differently. Glucose increases the active-to-silent ratio of phases, whereas insulin increases the period of the oscillation. To examine the dual modulation, we adopted a phase oscillator model that incorporated the phase and frequency modulations. This mathematical model showed that out-of-phase oscillations of glucose and insulin were more effective at synchronizing islet Ca2+ oscillations than in-phase stimuli. This finding suggests that a phase shift in glucose and insulin oscillations can enhance inter-islet synchronization.http://europepmc.org/articles/PMC5573301?pdf=render |
spellingShingle | Boah Lee Taegeun Song Kayoung Lee Jaeyoon Kim Per-Olof Berggren Sung Ho Ryu Junghyo Jo Insulin modulates the frequency of Ca2+ oscillations in mouse pancreatic islets. PLoS ONE |
title | Insulin modulates the frequency of Ca2+ oscillations in mouse pancreatic islets. |
title_full | Insulin modulates the frequency of Ca2+ oscillations in mouse pancreatic islets. |
title_fullStr | Insulin modulates the frequency of Ca2+ oscillations in mouse pancreatic islets. |
title_full_unstemmed | Insulin modulates the frequency of Ca2+ oscillations in mouse pancreatic islets. |
title_short | Insulin modulates the frequency of Ca2+ oscillations in mouse pancreatic islets. |
title_sort | insulin modulates the frequency of ca2 oscillations in mouse pancreatic islets |
url | http://europepmc.org/articles/PMC5573301?pdf=render |
work_keys_str_mv | AT boahlee insulinmodulatesthefrequencyofca2oscillationsinmousepancreaticislets AT taegeunsong insulinmodulatesthefrequencyofca2oscillationsinmousepancreaticislets AT kayounglee insulinmodulatesthefrequencyofca2oscillationsinmousepancreaticislets AT jaeyoonkim insulinmodulatesthefrequencyofca2oscillationsinmousepancreaticislets AT perolofberggren insulinmodulatesthefrequencyofca2oscillationsinmousepancreaticislets AT sunghoryu insulinmodulatesthefrequencyofca2oscillationsinmousepancreaticislets AT junghyojo insulinmodulatesthefrequencyofca2oscillationsinmousepancreaticislets |