Weakly-Supervised Learning of a Deep Convolutional Neural Networks for Semantic Segmentation
Deep convolutional neural networks (DCNNs) trained on the pixel-wise annotated images have dramatically improved the state-of-the-art in semantic segmentation. However, due to the high cost of labeling training data, its application has great limitation. In this paper, we propose a DCNNs model for g...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8755839/ |