Avery fixed point theorem applied to Hammerstein integral equations

We apply a recent Avery et al. fixed point theorem to the Hammerstein integral equation $$ x(t)=\int^{T_2}_{T_1}G(t,s)f(x(s))\,ds, \quad t\in[T_1,T_2]. $$ Under certain conditions on G, we show the existence of positive and positive symmetric solutions. Examples are given where G is a convolu...

Full description

Bibliographic Details
Main Authors: Paul W. Eloe, Jeffrey T. Neugebauer
Format: Article
Language:English
Published: Texas State University 2019-08-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2019/99/abstr.html