Avery fixed point theorem applied to Hammerstein integral equations

We apply a recent Avery et al. fixed point theorem to the Hammerstein integral equation $$ x(t)=\int^{T_2}_{T_1}G(t,s)f(x(s))\,ds, \quad t\in[T_1,T_2]. $$ Under certain conditions on G, we show the existence of positive and positive symmetric solutions. Examples are given where G is a convolu...

Full description

Bibliographic Details
Main Authors: Paul W. Eloe, Jeffrey T. Neugebauer
Format: Article
Language:English
Published: Texas State University 2019-08-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2019/99/abstr.html
_version_ 1818850180204593152
author Paul W. Eloe
Jeffrey T. Neugebauer
author_facet Paul W. Eloe
Jeffrey T. Neugebauer
author_sort Paul W. Eloe
collection DOAJ
description We apply a recent Avery et al. fixed point theorem to the Hammerstein integral equation $$ x(t)=\int^{T_2}_{T_1}G(t,s)f(x(s))\,ds, \quad t\in[T_1,T_2]. $$ Under certain conditions on G, we show the existence of positive and positive symmetric solutions. Examples are given where G is a convolution kernel and where G is a Green's function associated with different boundary-value problem.
first_indexed 2024-12-19T06:45:02Z
format Article
id doaj.art-29d87d3dbbc34778a6b02e87d5df77d3
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-19T06:45:02Z
publishDate 2019-08-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-29d87d3dbbc34778a6b02e87d5df77d32022-12-21T20:31:55ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912019-08-01201999,120Avery fixed point theorem applied to Hammerstein integral equationsPaul W. Eloe0Jeffrey T. Neugebauer1 Univ. of Dayton, Dayton, OH, USA Eastern Kentucky Univ., Richmond, KY, USA We apply a recent Avery et al. fixed point theorem to the Hammerstein integral equation $$ x(t)=\int^{T_2}_{T_1}G(t,s)f(x(s))\,ds, \quad t\in[T_1,T_2]. $$ Under certain conditions on G, we show the existence of positive and positive symmetric solutions. Examples are given where G is a convolution kernel and where G is a Green's function associated with different boundary-value problem.http://ejde.math.txstate.edu/Volumes/2019/99/abstr.htmlHammerstein integral equationboundary-value problemfractional boundary-value problem
spellingShingle Paul W. Eloe
Jeffrey T. Neugebauer
Avery fixed point theorem applied to Hammerstein integral equations
Electronic Journal of Differential Equations
Hammerstein integral equation
boundary-value problem
fractional boundary-value problem
title Avery fixed point theorem applied to Hammerstein integral equations
title_full Avery fixed point theorem applied to Hammerstein integral equations
title_fullStr Avery fixed point theorem applied to Hammerstein integral equations
title_full_unstemmed Avery fixed point theorem applied to Hammerstein integral equations
title_short Avery fixed point theorem applied to Hammerstein integral equations
title_sort avery fixed point theorem applied to hammerstein integral equations
topic Hammerstein integral equation
boundary-value problem
fractional boundary-value problem
url http://ejde.math.txstate.edu/Volumes/2019/99/abstr.html
work_keys_str_mv AT paulweloe averyfixedpointtheoremappliedtohammersteinintegralequations
AT jeffreytneugebauer averyfixedpointtheoremappliedtohammersteinintegralequations