Avery fixed point theorem applied to Hammerstein integral equations
We apply a recent Avery et al. fixed point theorem to the Hammerstein integral equation $$ x(t)=\int^{T_2}_{T_1}G(t,s)f(x(s))\,ds, \quad t\in[T_1,T_2]. $$ Under certain conditions on G, we show the existence of positive and positive symmetric solutions. Examples are given where G is a convolu...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2019-08-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2019/99/abstr.html |
_version_ | 1818850180204593152 |
---|---|
author | Paul W. Eloe Jeffrey T. Neugebauer |
author_facet | Paul W. Eloe Jeffrey T. Neugebauer |
author_sort | Paul W. Eloe |
collection | DOAJ |
description | We apply a recent Avery et al. fixed point theorem to the Hammerstein
integral equation
$$
x(t)=\int^{T_2}_{T_1}G(t,s)f(x(s))\,ds, \quad t\in[T_1,T_2].
$$
Under certain conditions on G, we show the existence of positive
and positive symmetric solutions. Examples are given where G is a
convolution kernel and where G is a Green's function associated with
different boundary-value problem. |
first_indexed | 2024-12-19T06:45:02Z |
format | Article |
id | doaj.art-29d87d3dbbc34778a6b02e87d5df77d3 |
institution | Directory Open Access Journal |
issn | 1072-6691 |
language | English |
last_indexed | 2024-12-19T06:45:02Z |
publishDate | 2019-08-01 |
publisher | Texas State University |
record_format | Article |
series | Electronic Journal of Differential Equations |
spelling | doaj.art-29d87d3dbbc34778a6b02e87d5df77d32022-12-21T20:31:55ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912019-08-01201999,120Avery fixed point theorem applied to Hammerstein integral equationsPaul W. Eloe0Jeffrey T. Neugebauer1 Univ. of Dayton, Dayton, OH, USA Eastern Kentucky Univ., Richmond, KY, USA We apply a recent Avery et al. fixed point theorem to the Hammerstein integral equation $$ x(t)=\int^{T_2}_{T_1}G(t,s)f(x(s))\,ds, \quad t\in[T_1,T_2]. $$ Under certain conditions on G, we show the existence of positive and positive symmetric solutions. Examples are given where G is a convolution kernel and where G is a Green's function associated with different boundary-value problem.http://ejde.math.txstate.edu/Volumes/2019/99/abstr.htmlHammerstein integral equationboundary-value problemfractional boundary-value problem |
spellingShingle | Paul W. Eloe Jeffrey T. Neugebauer Avery fixed point theorem applied to Hammerstein integral equations Electronic Journal of Differential Equations Hammerstein integral equation boundary-value problem fractional boundary-value problem |
title | Avery fixed point theorem applied to Hammerstein integral equations |
title_full | Avery fixed point theorem applied to Hammerstein integral equations |
title_fullStr | Avery fixed point theorem applied to Hammerstein integral equations |
title_full_unstemmed | Avery fixed point theorem applied to Hammerstein integral equations |
title_short | Avery fixed point theorem applied to Hammerstein integral equations |
title_sort | avery fixed point theorem applied to hammerstein integral equations |
topic | Hammerstein integral equation boundary-value problem fractional boundary-value problem |
url | http://ejde.math.txstate.edu/Volumes/2019/99/abstr.html |
work_keys_str_mv | AT paulweloe averyfixedpointtheoremappliedtohammersteinintegralequations AT jeffreytneugebauer averyfixedpointtheoremappliedtohammersteinintegralequations |