Machine Learning-Based Scoring System to Predict the Risk and Severity of Ataxic Speech Using Different Speech Tasks

The assessment of speech in Cerebellar Ataxia (CA) is time-consuming and requires clinical interpretation. In this study, we introduce a fully automated objective algorithm that uses significant acoustic features from time, spectral, cepstral, and non-linear dynamics present in microphone data obtai...

ver descrição completa

Detalhes bibliográficos
Principais autores: Bipasha Kashyap, Pubudu N. Pathirana, Malcolm Horne, Laura Power, David J. Szmulewicz
Formato: Artigo
Idioma:English
Publicado em: IEEE 2023-01-01
coleção:IEEE Transactions on Neural Systems and Rehabilitation Engineering
Assuntos:
Acesso em linha:https://ieeexplore.ieee.org/document/10323348/