A novel self-biased pMOS clamped deep trench CSTBT with enhanced tradeoff and short-circuit capability

Abstract In this work, a novel deep trench CSTBT (DT-CSTBT) features emitter trench and the P-layer is proposed and investigated by simulation. The self-biased pMOS, comprising an emitter trench, N-CS layer, P-layer, and P-well, demonstrates an excellent clamping effect potential. The proposed DT-CS...

Full description

Bibliographic Details
Main Authors: Jianbin Guo, Zhehong Qian, Xinru Chen, Hang Xu, Yafen Yang, David Wei Zhang
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-85530-0
Description
Summary:Abstract In this work, a novel deep trench CSTBT (DT-CSTBT) features emitter trench and the P-layer is proposed and investigated by simulation. The self-biased pMOS, comprising an emitter trench, N-CS layer, P-layer, and P-well, demonstrates an excellent clamping effect potential. The proposed DT-CSTBT suppresses the saturation current and improves the heat dissipation, resulting in a 23.5% expansion of the short-circuit safe operating area (SCSOA). It ensures the better reliability of the gate due to the high electric field away from the gate. Furthermore, the tradeoff relationship between on-state voltage (V ON) and turn-off loss (E off) of the new structure is also improved by 23.2% compared with the conventional CSTBT.
ISSN:2045-2322