On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$

Let $G$ be an abelian group and $X$ be a nonempty subset of $G$. A sequence $S$ over $X$ is called zero-sum if the sum of all terms of $S$ is zero. A nonempty zero-sum sequence $S$ is called minimal zero-sum if all nonempty proper subsequences of $S$ are not zero-sum. The Davenport constant of $X$,...

Full description

Bibliographic Details
Main Author: Guixin Deng
Format: Article
Language:English
Published: AIMS Press 2021-11-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2021066/fulltext.html
_version_ 1818694746548207616
author Guixin Deng
author_facet Guixin Deng
author_sort Guixin Deng
collection DOAJ
description Let $G$ be an abelian group and $X$ be a nonempty subset of $G$. A sequence $S$ over $X$ is called zero-sum if the sum of all terms of $S$ is zero. A nonempty zero-sum sequence $S$ is called minimal zero-sum if all nonempty proper subsequences of $S$ are not zero-sum. The Davenport constant of $X$, denoted by $\textsf{D}(X)$, is defined to be the supremum of lengths of all minimal zero-sum sequences over $X$. In this paper, we study the minimal zero-sum sequences over $X=\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]\subset\mathbb{Z}^2$. We completely determine the structure of minimal zero-sum sequences of maximal length over $X$ and obtain that $\textsf{D}(X)=2(n+m).$
first_indexed 2024-12-17T13:34:29Z
format Article
id doaj.art-2afa0fca90be4f86a2ad84d93ad24793
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-17T13:34:29Z
publishDate 2021-11-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-2afa0fca90be4f86a2ad84d93ad247932022-12-21T21:46:28ZengAIMS PressAIMS Mathematics2473-69882021-11-01621101110910.3934/math.2021066On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$Guixin Deng0Shuxin WangLet $G$ be an abelian group and $X$ be a nonempty subset of $G$. A sequence $S$ over $X$ is called zero-sum if the sum of all terms of $S$ is zero. A nonempty zero-sum sequence $S$ is called minimal zero-sum if all nonempty proper subsequences of $S$ are not zero-sum. The Davenport constant of $X$, denoted by $\textsf{D}(X)$, is defined to be the supremum of lengths of all minimal zero-sum sequences over $X$. In this paper, we study the minimal zero-sum sequences over $X=\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]\subset\mathbb{Z}^2$. We completely determine the structure of minimal zero-sum sequences of maximal length over $X$ and obtain that $\textsf{D}(X)=2(n+m).$https://www.aimspress.com/article/10.3934/math.2021066/fulltext.htmlzero-summinimal zero-sumdavenport constant
spellingShingle Guixin Deng
On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$
AIMS Mathematics
zero-sum
minimal zero-sum
davenport constant
title On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$
title_full On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$
title_fullStr On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$
title_full_unstemmed On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$
title_short On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$
title_sort on the davenport constant of a two dimensional box left kern 0 15em left 1 1 right kern 0 15em right times left kern 0 15em left m n right kern 0 15em right
topic zero-sum
minimal zero-sum
davenport constant
url https://www.aimspress.com/article/10.3934/math.2021066/fulltext.html
work_keys_str_mv AT guixindeng onthedavenportconstantofatwodimensionalboxleftkern015emleft11rightkern015emrighttimesleftkern015emleftmnrightkern015emright