On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$
Let $G$ be an abelian group and $X$ be a nonempty subset of $G$. A sequence $S$ over $X$ is called zero-sum if the sum of all terms of $S$ is zero. A nonempty zero-sum sequence $S$ is called minimal zero-sum if all nonempty proper subsequences of $S$ are not zero-sum. The Davenport constant of $X$,...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2021-11-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/10.3934/math.2021066/fulltext.html |
_version_ | 1818694746548207616 |
---|---|
author | Guixin Deng |
author_facet | Guixin Deng |
author_sort | Guixin Deng |
collection | DOAJ |
description | Let $G$ be an abelian group and $X$ be a nonempty subset of $G$. A sequence $S$ over $X$ is called zero-sum if the sum of all terms of $S$ is zero. A nonempty zero-sum sequence $S$ is called minimal zero-sum if all nonempty proper subsequences of $S$ are not zero-sum. The Davenport constant of $X$, denoted by $\textsf{D}(X)$, is defined to be the supremum of lengths of all minimal zero-sum sequences over $X$. In this paper, we study the minimal zero-sum sequences over $X=\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]\subset\mathbb{Z}^2$. We completely determine the structure of minimal zero-sum sequences of maximal length over $X$ and obtain that $\textsf{D}(X)=2(n+m).$ |
first_indexed | 2024-12-17T13:34:29Z |
format | Article |
id | doaj.art-2afa0fca90be4f86a2ad84d93ad24793 |
institution | Directory Open Access Journal |
issn | 2473-6988 |
language | English |
last_indexed | 2024-12-17T13:34:29Z |
publishDate | 2021-11-01 |
publisher | AIMS Press |
record_format | Article |
series | AIMS Mathematics |
spelling | doaj.art-2afa0fca90be4f86a2ad84d93ad247932022-12-21T21:46:28ZengAIMS PressAIMS Mathematics2473-69882021-11-01621101110910.3934/math.2021066On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$Guixin Deng0Shuxin WangLet $G$ be an abelian group and $X$ be a nonempty subset of $G$. A sequence $S$ over $X$ is called zero-sum if the sum of all terms of $S$ is zero. A nonempty zero-sum sequence $S$ is called minimal zero-sum if all nonempty proper subsequences of $S$ are not zero-sum. The Davenport constant of $X$, denoted by $\textsf{D}(X)$, is defined to be the supremum of lengths of all minimal zero-sum sequences over $X$. In this paper, we study the minimal zero-sum sequences over $X=\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]\subset\mathbb{Z}^2$. We completely determine the structure of minimal zero-sum sequences of maximal length over $X$ and obtain that $\textsf{D}(X)=2(n+m).$https://www.aimspress.com/article/10.3934/math.2021066/fulltext.htmlzero-summinimal zero-sumdavenport constant |
spellingShingle | Guixin Deng On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$ AIMS Mathematics zero-sum minimal zero-sum davenport constant |
title | On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$ |
title_full | On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$ |
title_fullStr | On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$ |
title_full_unstemmed | On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$ |
title_short | On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$ |
title_sort | on the davenport constant of a two dimensional box left kern 0 15em left 1 1 right kern 0 15em right times left kern 0 15em left m n right kern 0 15em right |
topic | zero-sum minimal zero-sum davenport constant |
url | https://www.aimspress.com/article/10.3934/math.2021066/fulltext.html |
work_keys_str_mv | AT guixindeng onthedavenportconstantofatwodimensionalboxleftkern015emleft11rightkern015emrighttimesleftkern015emleftmnrightkern015emright |