A TOPSIS-Assisted Feature Selection Scheme and SOM-Based Anomaly Detection for Milling Tools Under Different Operating Conditions
Anomaly detection modeled as a one-class classification is an essential task for tool condition monitoring (TCM) when only the normal data are available. To confront with the real-world settings, it is crucial to take the different operating conditions, e.g., rotation speed, into account when approa...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9462147/ |