The miR-27a-3p/FTO axis modifies hypoxia-induced malignant behaviors of glioma cells

Glioblastoma multiforme (GBM) is one of the most malignant types of central nervous system (CNS) tumors. N6-methyladenine (m6A) RNA modification is a main type of RNA modification in eukaryotic cells. In this study, we find that the m6A RNA methylation eraser FTO is dramatically downregulated in gli...

Full description

Bibliographic Details
Main Authors: Du Peng, Meng Li, Liao Xinbin, Liu Yi, Mo Xin, Gong Mengqi, Liao Yiwei
Format: Article
Language:English
Published: China Science Publishing & Media Ltd. 2023-01-01
Series:Acta Biochimica et Biophysica Sinica
Subjects:
Online Access:https://www.sciengine.com/doi/10.3724/abbs.2023002
Description
Summary:Glioblastoma multiforme (GBM) is one of the most malignant types of central nervous system (CNS) tumors. N6-methyladenine (m6A) RNA modification is a main type of RNA modification in eukaryotic cells. In this study, we find that the m6A RNA methylation eraser FTO is dramatically downregulated in glioma samples and cell lines, particularly in intermediate and core regions and hypoxia-challenged glioma cells. In vitro, FTO overexpression inhibits the hypoxia-induced capacities of glioma cells to proliferate, migrate and invade, and decreases the percentage of cells with m6A RNA methylation. In vivo, FTO overexpression inhibits tumor growth in the xenograft model and decreases the protein levels of migration markers, including Vimentin and Twist. miR-27a-3p is upregulated within glioma intermediate and core regions and hypoxia-challenged glioma cells. miR-27a-3p inhibits the expression of FTO via direct binding to FTO. miR-27a-3p overexpression promotes hypoxia-challenged glioma cell aggressiveness, whereas FTO overexpression partially diminishes the oncogenic effects of miR-27a-3p overexpression. FTO overexpression promotes the nuclear translocation of FOXO3a and upregulates the expression levels of the FOXO3a downstream targets BIM, BNIP3, BCL-6, and PUMA, possibly by interacting with FOXO3a. Conclusively, FTO serves as a tumor suppressor in glioma by suppressing hypoxia-induced malignant behaviors of glioma cells, possibly by promoting the nuclear translocation of FOXO3a and upregulating FOXO3a downstream targets. miR-27a-3p is a major contributor to FTO downregulation in glioma under hypoxia.
ISSN:1672-9145