Glutamate spillover in C. elegans triggers repetitive behavior through presynaptic activation of MGL-2/mGluR5
Katz and colleagues examine glutamate spillover effects on C. elegans behaviour. They show that impaired synaptic glutamate clearance in glial glutamate transporter mutants, causes presynaptic mgl-2/mGluR5 activation, generating postsynaptic neural activity oscillations driving repetitive behaviour.
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2019-04-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-019-09581-4 |