S-shaped bifurcations in a two-dimensional Hamiltonian system

We study the solutions to the following Dirichlet boundary problem: \begin{equation*}\frac{d^2x(t)}{dt^2}+\lambda f(x(t))=0,\end{equation*} where $x \in \mathbb{R}$, $t \in \mathbb{R}$, $\lambda \in \mathbb{R}^+$, with boundary conditions: \begin{equation*} x(0)=x(1)=A \in \mathbb{R}. \end{equation...

Full description

Bibliographic Details
Main Authors: Andre Zegeling, Paul Zegeling
Format: Article
Language:English
Published: University of Szeged 2021-07-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8876