The Programming Optimization of Capacitorless 1T DRAM Based on the Dual-Gate TFET

Abstract The larger volume of capacitor and higher leakage current of transistor have become the inherent disadvantages for the traditional one transistor (1T)-one capacitor (1C) dynamic random access memory (DRAM). Recently, the tunneling FET (TFET) is applied in DRAM cell due to the low off-state...

Full description

Bibliographic Details
Main Authors: Wei Li, Hongxia Liu, Shulong Wang, Shupeng Chen, Qianqiong Wang
Format: Article
Language:English
Published: SpringerOpen 2017-09-01
Series:Nanoscale Research Letters
Subjects:
Online Access:http://link.springer.com/article/10.1186/s11671-017-2294-3
Description
Summary:Abstract The larger volume of capacitor and higher leakage current of transistor have become the inherent disadvantages for the traditional one transistor (1T)-one capacitor (1C) dynamic random access memory (DRAM). Recently, the tunneling FET (TFET) is applied in DRAM cell due to the low off-state current and high switching ratio. The dual-gate TFET (DG-TFET) DRAM cell with the capacitorless structure has the superior performance-higher retention time (RT) and weak temperature dependence. But the performance of TFET DRAM cell is sensitive to programming condition. In this paper, the guideline of programming optimization is discussed in detail by using simulation tool—Silvaco Atlas. Both the writing and reading operations of DG-TFET DRAM depend on the band-to-band tunneling (BTBT). During the writing operation, the holes coming from BTBT governed by Gate2 are stored in potential well under Gate2. A small negative voltage is applied at Gate2 to retain holes for a long time during holding “1”. The BTBT governed by Gate1 mainly influences the reading current. Using the optimized programming condition, the DG-TFET DRAM obtains the higher current ratio of reading “1” to reading “0” (107) and RT of more than 2 s. The higher RT reduces the refresh rate and dynamic power consumption of DRAM.
ISSN:1931-7573
1556-276X