Effect of fuel-air mixture dilution on knock intensity (2nd report: Auto-ignition conditions in end gas preventing intense pressure oscillation)

This paper studies the condition of reducing knock intensity which is the pressure oscillation initiated by auto-ignition of the end gas. The knock intensity is thought to be decreased by suppressing the reaction rate of auto-ignition. In this study, the effect of the mixture dilution which decrease...

Full description

Bibliographic Details
Main Authors: Mitsuaki OHTOMO, Tetsunori SUZUOKI, Seiji YAMAMOTO, Hiroshi MIYAGAWA
Format: Article
Language:Japanese
Published: The Japan Society of Mechanical Engineers 2017-06-01
Series:Nihon Kikai Gakkai ronbunshu
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/transjsme/83/850/83_17-00044/_pdf/-char/en
Description
Summary:This paper studies the condition of reducing knock intensity which is the pressure oscillation initiated by auto-ignition of the end gas. The knock intensity is thought to be decreased by suppressing the reaction rate of auto-ignition. In this study, the effect of the mixture dilution which decreases the reaction rate on the knock intensity was investigated by using a spark ignition engine. In the case of low dilution, knock was observed when the auto-ignition of the end gas occurred. When the dilution ratio was over 30%, there was the condition that the knock did not occur even if the end gas auto-ignited. The combustion with low knock intensity was observed in either case that dilution gas was inert gas or air. The knock intensity was shown as a function of the maximum temperature and the maximum pressure which affected the reaction rate although the knock intensity was affected by the composition of the mixture, load, ignition timing, auto-ignition timing of the end gas and heat release quantity of the auto-ignited mixture.
ISSN:2187-9761