Classifying handedness in chiral nanomaterials using label error robust deep learning

Abstract High-throughput scanning electron microscopy (SEM) coupled with classification using neural networks is an ideal method to determine the morphological handedness of large populations of chiral nanoparticles. Automated labeling removes the time-consuming manual labeling of training data, but...

Full description

Bibliographic Details
Main Authors: C. K. Groschner, Alexander J. Pattison, Assaf Ben-Moshe, A. Paul Alivisatos, Wolfgang Theis, M. C. Scott
Format: Article
Language:English
Published: Nature Portfolio 2022-07-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-022-00822-7